Citation metrics are available on Google scholar.

  1. A. Munson, N. B. T. Kothakonda, J. Haferkamp, N. Y. Halpern, J. Eisert, and Ph. Faist, Complexity-constrained quantum thermodynamics. ArXiv e-prints (2024), arXiv:2403.04828
  2. Ph. Faist, M. P. Woods, V. V. Albert, J. M. Renes, J. Eisert, and J. Preskill, Time-Energy Uncertainty Relation for Noisy Quantum Metrology. PRX Quantum 4:4 040336 (2023), arXiv:2207.13707
  3. J. J. Meyer, S. Khatri, D. S. França, J. Eisert, and Ph. Faist, Quantum metrology in the finite-sample regime. ArXiv e-prints (2023), arXiv:2307.06370
  4. R. Suzuki, J. Haferkamp, J. Eisert, and Ph. Faist, Quantum complexity phase transitions in monitored random circuits. ArXiv e-prints (2023), arXiv:2305.15475
  5. N. Yunger Halpern, N. B. T. Kothakonda, J. Haferkamp, A. Munson, J. Eisert, and Ph. Faist, Resource theory of quantum uncomplexity. Physical Review A 106:6 062417 (2022), arXiv:2110.11371
  6. J. Haferkamp, Ph. Faist, N. B. T. Kothakonda, J. Eisert, and N. Yunger Halpern, Linear growth of quantum circuit complexity. Nature Physics 18 528–532 (2022), arXiv:2106.05305
  7. T. Sagawa, Ph. Faist, K. Kato, K. Matsumoto, H. Nagaoka, and F. G. S. L. Brandão, Asymptotic reversibility of thermal operations for interacting quantum spin systems via generalized quantum Stein's lemma. Journal of Physics A: Mathematical and Theoretical 54:49 495303 (2021), arXiv:1907.05650
  8. Ph. Faist, M. Berta, and F. G. S. L. Brandao, Thermodynamic Implementations of Quantum Processes. Communications in Mathematical Physics 384:3 1709-1750 (2021), arXiv:1911.05563
  9. Ph. Faist, S. Nezami, V. V. Albert, G. Salton, F. Pastawski, P. Hayden, and J. Preskill, Continuous Symmetries and Approximate Quantum Error Correction. Physical Review X 10:4 041018 (2020), arXiv:1902.07714
  10. C. Sparaciari, L. del Rio, C. M. Scandolo, Ph. Faist, and J. Oppenheim, The first law of general quantum resource theories. Quantum 4 259 (2020), arXiv:1806.04937
  11. Ph. Faist, T. Sagawa, K. Kato, H. Nagaoka, and F. G. S. L. Brandão, Macroscopic Thermodynamic Reversibility in Quantum Many-Body Systems. Physical Review Letters 123:25 250601 (2019), arXiv:1907.05651
  12. Ph. Faist, M. Berta, and F. Brandão, Thermodynamic Capacity of Quantum Processes. Physical Review Letters 122:20 200601 (2019), arXiv:1807.05610
  13. L. P. Thinh, Ph. Faist, J. Helsen, D. Elkouss, and S. Wehner, Practical and reliable error bars for quantum process tomography. Physical Review A 99:5 052311 (2019), arXiv:1808.00358
  14. E. Hinds Mingo, Y. Guryanova, Ph. Faist, and D. Jennings, Quantum thermodynamics with multiple conserved quantities. In Thermodynamics in the Quantum Regime (F. Binder et al., eds.), Springer (2018), arXiv:1806.08325
  15. M. Weilenmann, L. Krämer Gabriel, Ph. Faist, and R. Renner, Smooth entropy in axiomatic thermodynamics. ArXiv e-prints (2018), arXiv:1807.07583
  16. Ph. Faist and R. Renner, Fundamental Work Cost of Quantum Processes. Physical Review X 8 021011 (2018), arXiv:1709.00506. Media coverage by ETH Zurich, phys.org, and others
  17. M. Weilenmann, L. Kraemer, Ph. Faist, and R. Renner, Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies. Physical Review Letters 117:26 260601 (2016), Editor's suggestion, arXiv:1501.06920
  18. Ph. Faist, Quantum Coarse-Graining: An Information-Theoretic Approach to Thermodynamics. Ph. D. thesis, ETH Zurich (2016), arXiv:1607.03104
  19. N. Yunger Halpern, Ph. Faist, J. Oppenheim, and A. Winter, Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges. Nature Communications 7 12051 (2016), arXiv:1512.01189
  20. Ph. Faist and R. Renner, Practical and Reliable Error Bars in Quantum Tomography. Physical Review Letters 117:1 010404 (2016), arXiv:1509.06763
  21. Ph. Faist, F. Dupuis, J. Oppenheim, and R. Renner, The minimal work cost of information processing. Nature Communications 6 7669 (2015), arXiv:1211.1037
  22. Ph. Faist, J. Oppenheim, and R. Renner, Gibbs-preserving maps outperform thermal operations in the quantum regime. New Journal of Physics 17:4 043003 (2015), arXiv:1406.3618
  23. F. Dupuis, L. Kraemer, Ph. Faist, J. M. Renes, and R. Renner, Generalized Entropies. In XVIIth International Congress on Mathematical Physics (2013), arXiv:1211.3141