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Preface

Lecture notes based on a lecture given at the Freie Universität Berlin in 2024.

The goal of these lecture notes is to bring a reader with elementary background in quantum
information theory to understand both the main concepts of quantum error correction as
well as how a fully fault-tolerant computation might be implemented on quantum hardware
in the future.

What we’ll cover here

The bulk of the course begins with the fundamental theory behind quantum error correction.
If an environment corrupts quantum information stored on a quantum system, we’ll
understand the quantum-information-theoretic principles that dictate when the information
can be recovered. We’ll then focus on a powerful framework to construct and analyze
quantum error-correcting codes on n qubits, known as the stabilizer formalism. We’ll
then study a serious candidate for building reliable quantum computers: the surface code.
We’ll then cover more carefully some important concepts that are well illustrated by the
surface code, including the general idea of topological codes as well as the relation between
stabilizer codes and the mathematical field of homology.

Moving beyond the bare construction of interesting codes, we’ll study their ability to
protect information in a more realistic setting where the exposure to noise is persistent and
can also affect the operations involved in the error-correcting procedure itself. Specifically,
we’ll understand the idea of a code threshold; we’ll prove that the surface code has a
threshold, and draw some deep connections between decoding the surface code and phases
of matter of statistical models in condensed matter physics.

Beyond the storage of information, we’d like to run a quantum computation on encoded
states. We’ll cover the main important topics of fault-tolerant quantum computation,
including transversal gates and implementing gates with magic states. Putting together
these elements, we’ll overview a proposal for fault-tolerant quantum computation based on
the surface code.

An additional chapter presents an additional topic that is also central to the field of quantum
error correction, but is not immediately necessary in the above story line. A lecture on
quantum error correction wouldn’t feel complete if it failed to include an introduction to
bosonic codes, which exploit the structure of continuous-variable quantum systems to offer
very different schemes for protecting information against noise.
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I initially had the ambition to go deeper in some more advanced topics of qubit codes and
introduce subsystem codes, modern decoding techniques, and some recent constructions
that are at the core of some high-performance qubit codes known as qLDPC codes. I didn’t
have the chance to include these topics, and I’ll most likely add them in a later version of
these notes.

Other topics that are not included in these notes, and might make their way into them in
the future, include a formal framework for proving the threshold theorem, constructions
of codes for qudits, holographic codes and their application to quantum gravity, as well as
deeper connections between topological error correction and condensed matter physics. See
Recommended literature for more exhaustive references that cover these topics.

Recommended literature

The field of quantum error correction is too vast to cover in a single course; I’ll focus
on a selection of topics that I feel most significantly contribute to the story line of how
to run a quantum error-corrected, fault-tolerant computation on a quantum computer.
Several other resources provide deeper information about quantum error correction and
fault tolerance or one of its more specific sub-topics. I’ll select a few important resources
here.

First, Daniel Gottesman has recently made public a draft of his upcoming book Surviving
as a quantum computer in a classical world [1]. Gottesman’s book is an in-depth textbook
that covers a broad range of topics in quantum error correction, with a focus on qubit
stabilizer codes. I’m going to try to stick to a large extent to Gottesman’s definitions and
conventions; I highly recommend readers to look up additional details and proofs in this
book. Gottesman’s book is, in any case, a great reference for readers who would like to dig
further into the subject.

Second, the pedagogical aspect of these lecture notes can be complemented by looking
up information in the Error Correction Zoo [2], which collects many details about
error-correcting codes with a survey of the literature in the area that is as comprehensive
as possible. The Error Correction Zoo is a project founded and led by Victor V Albert
and which I’ve co-founded with Victor. We point readers to this resource in particular if
they would like to look up properties of specific codes, to find papers related to a specific
code, or to look up lists of codes that have a certain property.1

Other precious references have influenced the writing of these notes and are warmly
recommended to any interested reader; some are mentioned below. Furthermore, each
chapter in these notes also contains a section “Further reading” in which I collect a few
selected pointers for interested readers who would like to start delving into the literature
about related topics. The references provided here and in each “Further reading” section
are suggestions of mine which typically include the references that most influenced the
writing of these notes. They are not meant to be comprehensive.

• John Preskill’s lecture notes [3] on quantum computation are a wonderful resource to
learn about quantum error correction. They cover the important concepts in quantum
error correction while providing many code constructions and insightful explanations.
The lecture notes are available here;2 see especially Chapter 7 “Quantum Error
Correction” as well as handwritten notes on fault tolerance.3

1See https://errorcorrectionzoo.org/lists
2http://theory.caltech.edu/~preskill/ph219/
3http://theory.caltech.edu/~preskill/ph219/fault-tolerance-2011.pdf
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• Nielsen and Chuang’s great textbook [4] on quantum computation and quantum
information contains a useful explanation of the important concepts of quantum error
correction as well as of the stabilizer formalism.

• Several review or tutorial papers cover a broad range of topics in quantum error
correction, including by Keisuke Fujii [5], by Daniel Gottesman [6], and by Joschka
Roffe [7]. Several Ph.D. theses have great introductions to multiple topics in quantum
error correction, such as Daniel Gottesman’s [8], Nikolas Breuckmann’s [9], Aleksander
Kubica’s [10], and Tomas Jochym-O’Connor’s [11].

• Helpful lecture notes are available by Steven Girvin [12], Dan Browne [13], Kishor
Bharti,4 Andrew Cleland [14], as well as Ulysse Chabaud and Francesco Arzani.5

• The book on Quantum Error Correction edited by Lidar and Brun appeared in
2013 and contains several chapters by significant researchers in the quantum error
correction community.

• Recorded lectures and tutorials at Boulder Summer Schools include presentations by
Victor V Albert, Liang Jiang, and Aleksander Kubica.6 Recorded presentations at
QIP conferences include tutorials by Naomi Nickerson7 and Barbara Terhal.8.

• Recordings of the course taught by Beni Yoshida and Daniel Gottesman in 2018 are
available on the PIRSA platform.9 Recordings from the course taught by Gottesman
in 2007 are also available.10

• A recorded lecture series by Joe Renes at ETH Zurich covers many of the topics
included in these notes.11

• A collection of further useful are listed in a Twitter thread.12

• A Discord server also serves to connect the error correction community (simply ask
Victor for an invite; I’m avoiding to post the invite link publicly to avoid spam).

Acknowledgments
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members in Berlin for many discussions and for feedback on parts of these notes, including
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and Zoé for their love, care, and joy.
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7https://youtu.be/2v-J95GFSGc
8https://youtu.be/Je7sVJGKMgU
9https://pirsa.org/c17045

10https://pirsa.org/c07001
11https://video.ethz.ch/lectures/d-phys/2022/spring/402-0460-00L.html
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Chapter 1

Introduction

Quantum computing operates by controlling individual quantum systems, enabling us
to initialize them in some suitable state, engineer their evolution so as to perform a
computation, and read out a measurement result from the final state.

In the usual paradigm of quantum computation, we operate on a collection of qubits. They
can be initialized in a standard state, say |0⟩; we can apply 2-qubit gates on certain pairs
of qubits, depending on their hardware connectivity; we can measure individual qubits,
collapsing them onto a definite computational basis state:

However, errors happen because the qubits are not perfectly isolated systems. Errors can
happen at any stage of the computation, due to noise, to a calibration failure, or one of
the many other error sources. Errors can generally corrupt the computation and lead to
an incorrect result:

There is a tension between the requirement that good qubits be very well isolated from
their environment to avoid errors, and the requirement that the qubits couple strongly to
the systems we use to control them (laser pulses, microwave signals, magnetic fields, . . . )
to drive the computation. This tension leads to errors being inevitable in practice.

1.1 Common types of errors

• decoherence or dephasing noise: A superposition of quantum states evolves into a
mixture, and off-diagonal coefficients of the density matrix written in the energy
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1.2. STRATEGIES TO COUNTER ERRORS

eigenbasis decay. Such noise happens if the environment weakly measures the energy
of the system;

• depolarizing noise: qubits become more random and lose the information stored in
them. Their state is gradually replaced by a maximally mixed state. Such noise
occurs if the qubit is coupled to a high-temperature environment;

• photon loss or erasure errors: a subsystem (e.g., a photon) is lost, along with any
information it was carrying;

• amplitude damping or relaxation noise or spontaneous emission noise: a subsystem
decays to its ground state, inducing the loss of the information it was carrying;

• displacements in continuous-variable systems: small shifts in phase space of a bosonic
mode;

• discretized qubit errors: bit-flip (X) and phase-flip (Z) errors. These errors are
convenient for the analysis of qubit error-correcting codes. We’ll see how we can turn
the native hardware error noise dynamics of a system, which is often one of the types
of errors above, into discrete X and Z errors.

• . . .

1.2 Strategies to counter errors

1. Do nothing and hope for the best. We can only run short circuits before
our computation is overwhelmed by the noise. This regime is called the Noisy
Intermediate-Scale Quantum (NISQ) regime [15].
There was some initial optimism that an advantage over classical computers might
already be obtained by operating quantum computers in this regime. As our un-
derstanding of this regime progresses, however, it appears less and less likely that
such an advantage can materialize. We have not seen any conclusive evidence that
running circuits in the NISQ regime can offer any significant practical advantages for
useful problems.

2. Play classical tricks to reduce the effect of the noise. In particular, quantum
error mitigation refers to a collection of schemes in which one first characterizes the
noise precisely and then uses multiple runs of the circuit to infer, often through some
type of extrapolation, the circuit’s result without the noise. For instance, we might
run computationally equivalent circuits of varying depth, and thus with varying
levels of noise, to estimate the expectation value of an observable on the output state
for the different levels of noise. Extrapolating this value to zero noise provides an
estimate for the output of the noiseless circuit.
Quantum error mitigation is indeed used in practice to push the limits of how large of
a circuit we can run on noisy hardware. However, quantum error mitigation requires
a number of runs of the circuit that grows exponentially both in the number of qubits
as well as in the circuit depth. This high sampling overhead means the technique is
not a scalable solution to remove errors in a large-scale quantum computation.

3. Avoid the noise by using decoherence-free subspaces. Suppose there is a
subspace of the quantum system’s Hilbert space that is not acted upon by the noise.
We could encode our precious quantum information in that subspace, out of reach of
the noise.
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1.2. STRATEGIES TO COUNTER ERRORS

However, the noise typically acts in the full state space, meaning that there is no
decoherence-free subspace available to store our information. Furthermore, even
if the noise acts very weakly in that subspace, there is no mechanism to remove
the effect of that noise; errors will accumulate over time, eventually corrupting the
computation.

4. Remove undesirable Hamiltonian terms with dynamical decoupling. Some-
times, there is a term in the system’s Hamiltonian that couples the qubit with an
environmental degree of freedom (e.g., a background magnetic field), which we would
like to suppress. A set of techniques called dynamical decoupling, consist in applying
sequences of pulses to the system that are designed to suppress the effect of the
undesired coupling. A spin-echo scheme, for instance, reduces the effect on a spin
qubit of a slowly varying background magnetic field: We flip the qubit state at regular
intervals in order to undo the drift caused by the background field. More sophisticated
schemes can achieve better accuracy and can be combined with computational gates.
These techniques are powerful and are actively used in modern quantum hardware.
But they can only suppress coherent errors, i.e., an evolution generated by a Hamilto-
nian term. And again, these techniques are generally unable to remove any residual
nonunitary noise that might have found its way into the computational degrees of
freedom.

5. Actively detect the presence of errors and perform corrective operations to
remove them: quantum error correction. With quantum error correction, parts
of the circuit that we run on the quantum device serve solely to detect and correct
errors as they happen, rather than to directly apply logical gates. Suppose we would
like to run a logical quantum circuit on k qubits. Techniques from quantum error
correction transform this circuit into a larger protocol involving n qubits and including
multiple rounds of gates applied to perform logical computation, measurements to
detect the presence of errors, running an algorithm on a classical computer to
compute any corrections that need to be applied to the qubits (running a decoder),
and applying any necessary corrections (Fig. 1.1).

Figure 1.1: Standard paradigm of quantum error correction

A major challenge in implementing fault-tolerant quantum computation with quantum
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1.3. DESIGNING A QUANTUM ERROR-CORRECTING CODE

error correction is the large overheads, both in number of qubits and in computation
time, that are often required in schemes that we have found so far. Reducing these
overheads is a central topic of current research.

6. Engineer a system with dissipative dynamics that are specially designed
to remove errors: autonomous quantum error correction or self-correcting
codes. While some promising results exist, few such schemes are known. Such
schemes seem to require a high connectivity of the qubits (e.g., a four-dimensional
lattice) or some other nonpractical features. Looks hard!

1.3 Designing a quantum error-correcting code

Classical information can be protected by simply repeating it (classical repetition code):

0 → 00000; 1 → 11111 . (1.1)

Any errors that corrupt the encoded bits can easily be inferred, as long as the noise is
weak enough such that the chance of corrupting more than half of the bits is negligible.
For instance, the string 00010 can be identified as a corrupted version of 00000, encoding
the logical bit value 0.

By analogy, an appealing idea would be to encode a quantum state |ψ⟩ by repeating it
multiple times:

|ψ⟩ → |ψ⟩ ⊗ |ψ⟩ ⊗ |ψ⟩ . (1.2)

Unfortunately, such an encoding is forbidden by the no-cloning theorem. Recall, the
map ρ → ρ⊗ ρ is not linear in ρ and is therefore not a valid quantum operation.

Another idea, exploiting our intuition from the classical repetition code, would be to encode
a qubit state |ψ⟩ = α|0⟩ + β|1⟩ as

|ψcode⟩ = α|00 . . . 0⟩ + β|11 . . . 1⟩ . (1.3)

This is the quantum repetition code .

Simple exercise: Find an encoding circuit for the quantum repetition code.

Suppose that one of the qubits of the quantum repetition code gets flipped: |0⟩ → |1⟩,
|1⟩ → |0⟩. This error is called a bit-flip error , or X error , as it results from the
application of a Pauli-X matrix X = ( 0 1

1 0 ) on the affected qubit. If, for instance, the second
qubit undergoes an X error, the state evolves to

|ψX2  
qrep ⟩ = α|010 . . . 0⟩ + β|101 . . . 1⟩ . (1.4)

We can detect the presence of such an error without destroying the superposition by
measuring the following 2-body operator on the first and second qubits:

Z ⊗ Z =
(

1 0
0 −1

)
⊗
(

1 0
0 −1

)
=


1

−1
−1

1

 . (1.5)
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1.3. DESIGNING A QUANTUM ERROR-CORRECTING CODE

The operator Z ⊗ Z has two eigenvalues, ±1. We obtain the measurement outcome +1 if
the two qubits are projected into the subspace spanned by |00⟩, |11⟩ and −1 if the state is
projected into the subspace spanned by |01⟩, |10⟩. Measuring Z ⊗Z on the two first qubits
therefore tells us if the two qubits are in the same computational basis state (outcome +1)
or not (outcome −1), without revealing the values of the qubits.

Our |ψqrep⟩ is an eigenvector of Z1 ⊗Z2 ≡ Z⊗Z⊗1⊗1⊗1, associated with the eigenvalue
+1:

Z1Z2|ψqrep⟩ = |ψqrep⟩ . (1.6)

On the other hand, |ψX2  
qrep ⟩ is an eigenstate with eigenvalue −1, indicating the presence of

an error:

Z1Z2|ψX2  
qrep ⟩ = −|ψX2  

qrep ⟩ . (1.7)

Similarly, measuring Z2Z3, Z3Z4, and Z4Z5 (which all commute and can therefore be
measured simultaneously) on |ψX2  

qrep ⟩ gives −1, +1, and +1, indicating that a bit-flip must
have occurred on the second qubit.

Therefore, by measuring Z1Z2, Z2Z3, Z3Z4, and Z4Z5, we can tell if a qubit suffered a
bit-flip error, and furthermore identify which one, without destroying the superposition
between the two logical computational basis states. Indeed, we can restore |ψqrep⟩ by
flipping the affected qubit that we’ve identified from the measurement outcomes.

. The measurements must be implemented as genuine two-body measure-
ments, or else the encoded state is destroyed. Measuring Z1 and Z2 separately and
multiplying the outcomes would result in the same outcome as measuring the two-body
operator Z1Z2; but such a measurement would destroy the superpositions in our encoded
state and we wouldn’t be able to restore |ψqrep⟩ without prior knowledge of α and β. (We
don’t want to assume prior knowledge of α and β because the point of an error-correcting
code is to store unknown information; if we already know what state we are currently
storing, we wouldn’t need to store it in the first place.)

What if an error causes a qubit to pick up a (−1) relative phase between its |0⟩ and |1⟩
states? In this case, the qubit undergoes the evolution |0⟩ → |0⟩, |1⟩ → −|1⟩. This error is
called a phase-flip error or Z error . In this case, the encoded state evolves to

|ψZi  
qrep⟩ = α|00000⟩ − β|11111⟩ . (1.8)

Flash exercise: Show that there does not exist any measurement that can detect this error
without destroying the superposition.

The problem is that the state |ψZi  qrep⟩, which is the encoded version of the state |ψ⟩ on which
a Zi error occurred, coincides exactly with the encoded version of the different logical state
|ψ′⟩ = α|0⟩ − β|1⟩ on which no error occurred. It is therefore impossible to tell whether an
error occurred without knowing a priori whether we encoded |ψ⟩ or |ψ′⟩; again, if we knew
what the encoded state is, we wouldn’t need to encode it!

The quantum repetition code therefore cannot detect phase flips.

Recall that the Hadamard gate H =
( 1 1

1 −1
)
/
√

2 = H† interchanges the X and Z operators:
HXH = Z, HZH = X. Therefore, if we apply a Hadamard gate onto each physical qubit
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1.3. DESIGNING A QUANTUM ERROR-CORRECTING CODE

of the quantum repetition code, we obtain a code that can protect against phase-flip errors:

|ψ⟩ = α|0⟩ + β|1⟩ → |ψqrep,H⟩ = α|+++++⟩ + β|−−−−−⟩ . (1.9)

Since the original encoding was vulnerable to phase-flip errors, the Hadamard-rotated
version is vulnerable to bit-flip errors.

Is it possible to design a code that can correct any single-qubit error, regardless of whether
it is an X or a Z error?

Consider three copies of the 1 → 3 quantum repetition code: This scheme uses 9 physical
qubits to encode 3 qubits that are protected against up to one X error on any triplet of
physical qubits. Suppose that we further use those three bit-flip-protected qubits to host a
1 → 3 quantum repetition code in the Hadamard basis. Then a phase flip error acting on
any of the nine physical qubits induces a phase flip error on one of the three intermediate
qubits, which can be corrected for by the Hadamard version of the repetition code. This
code can therefore correct any X or Z single-qubit error on the nine physical qubits:

This code is constructed using the technique of code concatenation, where the output of
a code is fed to the input of another code.

In the above code, a qubit state |ψ⟩ = α|0⟩ + β|1⟩ is encoded as:

|ψ⟩ = α|0⟩ + β|1⟩
phase-flip code−−−−−−−−−→ α|+++⟩ + β|−−−⟩
bit-flip code−−−−−−−→ α

2
√

2

[
(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩)

]
+ β

2
√

2

[
(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩)

]
= α|0⟩ + β|1⟩ ,

(1.10)

where the computational basis logical states (or codewords) are given as

|0⟩ = 1
2
√

2
(|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ⊗ (|000⟩ + |111⟩) ; (1.11)

|1⟩ = 1
2
√

2
(|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) ⊗ (|000⟩ − |111⟩) . (1.12)

This code is known as the 9-qubit Shor code which can correct any single-qubit bit-flip
or phase-flip error.

Therefore, quantum error correction is possible! There are still many missing elements
before we can actually protect quantum information in quantum hardware, but it is already
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1.4. WHAT’S NEXT?

encouraging to see that it is in principle possible to protect information against some
unknown noise. (Missing steps include: checking that we can correct for hardware-native
errors such as dephasing noise as well as developing schemes for performing the relevant
error-detecting measurements without risking introducing too many new errors with faulty
measurements)

In summary, here are some of the challenges of designing quantum error-correcting codes
which we’ve encountered above:

1) The no-cloning theorem prohibits encoding a state by simply repeating it multiple
times. Protection cannot be achieved by naive redundancy.

2) Measurements that detect the presence of errors need to be chosen cleverly such that
they do not collapse superpositions in the encoded state. They must typically be
genuine multi-body measurements.

3) There are different types of errors. A code designed to protect against specifically
one type of error will generically fail to protect against other types of errors.

4) Errors can also occur during the operations necessary for the error-correction protocol.
They are generally problematic and can cause an uncontrolled accumulation of errors!
We’ll deal with this challenge later, when we’ll shift the focus from constructing
error-correcting codes to studying fault-tolerant schemes for quantum computation.

1.4 What’s next?

Now that we’ve identified the main challenges we encounter when attempting to protect
quantum information from noise, we’ll proceed with an-depth analysis of how to con-
struct schemes for quantum error correction and fault-tolerant quantum computation. In
particular, we’ll address the following points:

• Establish the fundamental theory of quantum error correction and identify some
essential principles;

• Develop a formalism to systematically design and analyze a large class of quantum
error-correcting codes;

• Construct the surface code and study its properties. The surface code will serve as
our main go-to example of a fully-featured error-correcting code;

• Develop schemes to compute with encoded states and establish some principles of
fault tolerance;

• Understand the formalism of quantum error correction beyond qubits: bosonic codes;

• . . . and more!

1.5 A brief recap of the formalism of quantum information theory.

I’ll be assuming that you are familiar with the fundamental concepts of quantum information
theory and quantum computation. In particular, I’ll assume familiarity with the following
concepts, which I’m listing here to clarify some notation and definitions:

13



1.5. A BRIEF RECAP OF THE FORMALISM OF QUANTUM INFORMATION THEORY.

• To every quantum system A is associated a complex Hilbert space HA. For now, we’ll
assume that the Hilbert space dimension is finite. We’ll comment on how to extend
the concepts introduced here to infinite-dimensional systems when we introduce
bosonic codes, but we’ll keep our explanations at the level of the physical concepts,
leaving a fully rigorous treatment to further reading.

• A system may be composed of subsystems A,B,C, . . ., in which case the Hilbert
space of the composed system is the tensor product of the individual Hilbert spaces
of each subsystem:

HABC... = HA ⊗ HB ⊗ HC ⊗ · · · . (1.13)

• The space of linear operators on HA is denoted by L(HA). It is equipped with the
Hilbert-Schmidt inner product ⟨A,B⟩ ≡ tr(A†B).
An operator A ∈ L(HA) is Hermitian if A† = A. An operator U ∈ L(HA) is unitary
if U †U = UU † = 1A. An operator V : HA → HB is an isometry if V †V = 1A. An
operator W : HA → HB is a partial isometry if W †W is a projector.

• A ket, or a pure state of A, is a vector |ψ⟩A ∈ HA such that ⟨ψ |ψ⟩ = 1.

• A quantum state, or simply state of A is a positive semidefinite operator ρA ∈ L(HA)
such that tr(ρA) = 1. Such an operator is also called density operator or density
matrix.
A state ρA is pure if it can be written as ρA = |ψ⟩⟨ψ|A for some |ψ⟩A ∈ HA. The
term pure state is used both for |ψ⟩A and |ψ⟩⟨ψ|A.

• An observable O is a Hermitian operator. A measurement of an observable O ∈ L(HA)
performed on a system A in the state ρA yields an outcome x ∈ R that is random
and distributed according to Pr[x] = tr(ρAP

O,x), where PO,x is the projector onto
the eigenspace of O corresponding to the eigenvalue x.

• The most general form of a quantum measurement is specified by a positive-operator-
valued measure (POVM) dE(x) with x ∈ Ω, where Ω is some measurable space
representing the possible measurement outcomes. The probability measure dµ(x) of
obtaining the outcome x ∈ Ω if the system is in the state ρ is

dµ(x) = tr(dE(x) ρ) . (1.14)

Usually, Ω is finite, representing a finite collection of possible measurement outcomes.
In this case, the POVM is specified by a collection of POVM effects {Ex}x∈Ω, where
Ex is positive semidefinite, where

∑
x∈ΩEx = 1, and where the outcome x occurs

with probability

Pr[x] = tr(Exρ) . (1.15)

• Notation: For two operators X,Y ∈ L(HA), we write X ≤ Y if Y − X is positive
semidefinite. (For example, a POVM effect Ex necessarily satisfies 0 ≤ Ex ≤ 1.)

• The state ρA of a closed system evolves as ρA → UtρAU
†
t , where Ut is a unitary

operator which depends on the time duration t of the evolution.

• The most general physical evolution of input quantum states on HA to output
quantum states on HB is specified by a completely positive (c.p.), trace-preserving

14



1.5. A BRIEF RECAP OF THE FORMALISM OF QUANTUM INFORMATION THEORY.

(t.p.) map EA→B, also known as a quantum channel, that maps input states to output
states:

EA→B : L(HA) → L(HB)
ρA 7→ EA→B(ρA) . (1.16)

The map is c.p. if (EA ⊗ idR)(ρAR) ≥ 0 for any additional system R and for any state
ρAR. The map is t.p. if tr(E(ρA)) = 1 for any state ρA.

• The adjoint of a map E is the unique map E† such that

tr(XE(Y )) = tr(E†(X)Y ) ∀X,Y ∈ L(H ) . (1.17)

The adjoint map of a c.p., t.p. map gives the Heisenberg picture of time evolution:

Note that a map EA→B is t.p. if and only if E†(1B) = 1A.

• A map EA→B is c.p. if and only if it can be written in the operator-sum representation

EA→B(·) =
∑

k

Ek (·)E†
k , (1.18)

where the Ek : HA → HB are arbitrary linear complex operators. The map EA→B is
further t.p. if and only if

∑
k E

†
kEk = 1A.

The operators {Ek} are said to be Kraus operators of EA→B.

• Any c.p., t.p. map EA→B admits a Stinespring dilation in the following form: There
exists a system E and an isometry UA→BE such that

EA→B = tr
{
UA→BE (·)U †

}
. (1.19)

The Stinespring dilation is unique up to partial isometries on E. The dimension of
E need not exceed dim(HA) dim(HB).
The isometry UA→BE can be replaced by a unitary U ′

AEin→BEout , provided the
environment systems Ein and Eout are chosen of suitable dimension and Ein is
initialized in a fixed state.

• Notation: Given a real function f : R → R, and given any Hermitian matrix A with
spectral decomposition A =

∑
aP a, we write

f(A) =
∑

a

f(a)P a . (1.20)

• The trace norm ∥A∥1 = tr
√
A†A = tr|A| induces the trace distance between states,

δtr(ρ, σ) = 1
2∥ρ− σ∥1 . (1.21)
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1.5. A BRIEF RECAP OF THE FORMALISM OF QUANTUM INFORMATION THEORY.

• The fidelity between two states ρ, σ is defined as

F (ρ, σ) = tr
√√

ρσ
√
ρ = ∥√

ρ
√
σ∥1 . (1.22)

The fidelity and the trace distance both quantify the distinguishability of quatnum
states.

• The operator norm or infinity norm ∥A∥∞ is the largest singular value of A. If A is
Hermitian, it coincides with the largest eigenvalue of A in magnitude.

• The diamond distance between two channels E(1)
A→B, E(2)

A→B is

1
2
∥∥E(1) − E(2)∥∥

⋄ = max
σAR

1
2
∥∥E(1)(σ) − E(2)(σ)

∥∥
1 , (1.23)

where the optimization ranges over all states σAR over the input system A and a
reference system R ≃ A. The optimization may be restricted to pure states without
changing the optimal value.

• The von Neumann entropy of a quantum state ρA on HA is defined as

H(A)ρ = − tr
(
ρ log ρ

)
. (1.24)

For a bipartite quantum state ρAB on HA ⊗ HB, the conditional von Neumann
entropy of A conditioned on B is

H(A|B)ρ = H(AB)ρ −H(A)ρ . (1.25)

• The quantum relative entropy between two states ρA and σA is defined as

D
(
ρA

∥∥σA

)
= tr

{
ρA

(
log ρA − log σA

)}
. (1.26)

• The Choi matrix of a quantum channel NA→B is defined as

NBR = NA→B(ΦB:R) , (1.27)

where

ΦAR =
∑

|i⟩A ⊗ |i⟩R (1.28)

is a maximally entangled ket (or nonnormalized state) between A and a reference
system R ≃ A with computational bases {|i⟩A} and {|i⟩R}, and where ΦAR =
|Φ⟩⟨Φ|AR.

• The ket |Φ⟩AR defined above has useful properties:

→ OA|Φ⟩AR = ΦAR if and only if OA = 1A;
→ NA→A(ΦAR) = ΦAR if and only if NA→A = idA;
→ (OA ⊗ 1R)|Φ⟩AR = 1A ⊗ (OT )R|Φ⟩AR, where OT =

∑
⟨i|O |i′⟩|i′⟩⟨i| denotes the

transpose with respect to the {|i⟩} basis.
→ For any pure state |ρAR⟩, there exists M ∈ L(HA) (a square dA × dA complex

matrix) such that |ρAR⟩ = (1⊗M)|Φ⟩AR, with MM † = ρR and (M †M)T = ρA.
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1.6. FURTHER READING

• The Pauli matrices are

X =
(

0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
. (1.29)

We’ll use these quite a bit!

1.6 Further reading

The role of the Noisy Intermediate-Scale Quantum (NISQ) regime was laid out in [15]. In
the NISQ regime, devices operate beyond the regime in which we can compute classically
with brute force what the device does. But errors accumulate quickly because no quantum
error correction is carried out, limiting the size of circuits that can be run before the
calculation becomes overwhelmed by noise. Experimental developments in this regime
include demonstrations on superconducting qubits platforms by Google [16] and IBM [17].

A technique to reduce the effect of noise in the absence of quantum error correction is to
use quantum error mitigation [18–20]. These techniques are an appealing and practical
means of reducing errors on circuits, as they only involve classical processing and additional
repetitions of the experiment. However, they require overheads in the number of additional
repetitions of the experiment that scale exponentially with the circuit size, making this
scheme impractical for larger circuits [21].

Another measure that can be taken against noise is to make sure that the coherent control
of qubits is made as accurate as possible. A careful calibration of experimental parameters
can make sure that a Hamiltonian term is turned on for the correct amount of time, for
instance. Yet there are often undesired Hamiltonian terms that couple the qubit we wish
to control to other qubits or other degrees of freedom on the device. A calibration might
be quickly invalidated, for instance, in the presence of slowly varying background fields
that are hard to control. In such cases, techniques based on dynamical decoupling [22] and
modern techniques of quantum control and pulse engineering [23] can help cancel out the
effect of unwanted Hamiltonian couplings.

But once these options are exhausted, and to run large or long circuits, we need a way
of making sure errors are removed from the system at a rate at least as high as the rate
at which they occur. This process can be achieved using techniques of quantum error
correction and fault tolerance.

17



Chapter 2

Fundamental Theory of Quantum Error Correction I:
Protecting information against noise

In this chapter, we’ll develop the fundamental theoretical tools needed to understand the
principles of quantum error correction. We’ll define the task of quantum error correction
and we’ll find mathematical characterizations for when this task is achievable.

The fundamental theory of quantum error correction is split into two parts. In this chapter,
we’ll cover the information-theoretic principles of error correction and the fundamental
conditions under which error correction is possible. In the following chapter, we’ll establish
some fundamental principles that apply to encodings involving multiple qubits, or more
generally, multiple subsystems.

2.1 Encoding logical information on a physical system

The logical space HL is a Hilbert space representing the state space of the quantum
information (the logical information) we seek to protect from the noise.

The physical space HP is a Hilbert space associated with the physical quantum system(s)
that we use to encode the logical information.

Suppose we want to run an algorithm that requires 10 qubits with very low error rates,
by using an error-correcting code hosted on a physical platform consisting of 200 noisy
physical superconducting qubits. Then HL = C210 is the state space of the 10 qubits and
HP = C2200 is the state space of the 200 superconducting qubits.

An encoding map EL→P is a completely positive, trace-preserving map (i.e., a quantum
channel) from L to P , such that there exists a quantum channel RP →L that satisfies
RP →L ◦ EL→P = idL (i.e., we have RP →L(EL→P (ρ)) = ρ for all states ρ on L).

The existence of RP →L ensures that the encoding procedure itself doesn’t lose information,
even in the absence of noise.

Side exercise: Show that for all ρ, σ: D(E(ρ)∥E(σ)) = D(ρ∥σ), where D(ρ∥σ) = tr
[
ρ(log ρ−

log σ)
]

is the quantum relative entropy.
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2.1. ENCODING LOGICAL INFORMATION ON A PHYSICAL SYSTEM

An encoding map EL→P is an isometric encoding if EL→P (·) = VL→P (·)V † for some
isometry VL→P .

Recall that an isometry VL→P is defined as an operator HL → HP such that V †V = 1L.
Most encodings we’ll study are isometric.

An isometry VL→P can be thought of as an embedding of states on HL into the larger
Hilbert space HP . It can be specified by how the basis states of HL are mapped to states
in HP :

|0⟩L → VL→P |0⟩L =: |ψ0⟩P

|1⟩L → VL→P |1⟩L =: |ψ1⟩P

...

(2.1)

For any isometry VL→P , the map E(·) = V (·)V † is a valid encoding map.

Flash exercise: Find a channel R for an isometric encoding E(·) = V (·)V † such that
R ◦ E = id.

Let EL→P be an isometric encoding map, EL→P (·) = VL→P (·)V †. Then the subspace of
HP that is the image (or range) of VL→P is called the code space C.

We often denote the projector onto the code space C of an isometric encoding E(·) = V (·)V †

by Π (code space projector):

Π = V V † . (2.2)

Any ket |ψ⟩ ∈ C that lies in the code space C of an isometric encoding is called a code
word. (Sometimes, the term “code word” is used to designate specifically the encoded
states {|ψj⟩P } of a canonical basis {|j⟩L} of HL: |ψj⟩P = VL→P |j⟩L.)

For an isometric encoding with code space projector Π, a logical operator is an operator
O on HP that satisfies

ΠOΠ = OΠ . (2.3)

If O is Hermitian, or if O is unitary, then O is a logical operator if and only if [O,Π] = 0.

Simple exercise: Prove the last statement.

The logical operator is a nontrivial logical operator if its action on the code space is not
proportional to 1L, i.e., ΠOΠ ̸∝ Π. Equivalently, V †OV ̸∝ 1L, where V is the encoding
isometry.

Logical operators are precisely those operators that map code words into code words:

O is a logical operator ⇐⇒ O|ψ⟩ ∈ C ∀ |ψ⟩ ∈ C . (2.4)

A Hermitian or unitary logical operator is block-diagonal in a basis of C, complemented by
a basis of C⊥:
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Example: The encoding of one qubit into four qubits given by

|0⟩L → |0⟩P = 1√
2
(
|0000⟩ + |1111⟩

)
;

|1⟩L → |1⟩P = 1√
2
(
|0011⟩ + |1100⟩

)
,

(2.5)

is isometric, with encoding isometry VL→P = |0⟩P ⟨0|L + |1⟩P ⟨1|L. Its code space is spanned
by the code words {|0⟩P , |1⟩P }.

Simple exercise: Show that X ⊗X ⊗ 1⊗ 1 is a nontrivial logical operator.

Some encoding maps are not isometric. Such maps may encode a pure logical state into a
physical state that is mixed. Yet often, many encoding maps can still be thought of as
isometric in some way, despite not being strictly speaking isometric. For instance:

• Encoding with a “dummy mixed state:” Consider an encoding map of the form

EL→P (·) = U
(
(·) ⊗ τ

)
U † , (2.6)

where U is some unitary operator and where τ is some fixed state. The map is clearly
an encoding map, with a corresponding recovery operation R defined by applying
the inverse unitary and tracing out the system containing the fixed state τ .
While EL→P is not an isometric encoding in general, it becomes an isometric encoding
if τ is chosen to be a pure state. (We’ll see that certain types of codes, called
subsystem codes, can be viewed as having encoding maps of this type.)

• Encoding with a random, but known, isometric encoding: Given a collection of
isometries {V (j)

L→P0
}j , and a probability distribution {pj}, we can define the following

encoding map:

EL→P0X(·) =
∑

j

pj
[
V (j)(·)V (j) †]⊗ |j⟩⟨j|X , (2.7)

where X is a classical register and where we formally identify P ≃ P0X as the physical
space. The encoding corresponds to randomly choosing an isometric encoding V (j)

with probability pj , encoding the logical information with V (j) from L to P0, and
storing the random choice j on a classical register. This map is a valid encoding map,
with associated channel R given by measuring the classical register and applying the
corresponding inverse isometry.
While EL→P is not an isometric encoding, it can be viewed as an isometric encoding
if we condition on the value of X, i.e., on the choice j of which isometric code is
employed.

The second example above can be understood as a special case of the first example; indeed,
choose τ as a diagonal encoding of the distribution pj and U as executing one of the V (j)

conditioned on the value in X.

In fact, any encoding map must be essentially of the form of the first example (this structure
follows from algebraic arguments; see further reading). This is partly the reason why we
usually don’t worry too much about nonisometric encodings in quantum error correction.
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2.2. PROTECTING AGAINST NOISE

2.2 Protecting against noise

We model the noise as any possible quantum evolution that can involve an environment.
Such evolutions are specified by completely positive maps.

We model noise by a completely positive, trace-preserving map (quantum channel) NP →P ′ .

For example, the depolarizing noise channel on a single qubit (P ′ = P = one qubit) with
depolarizing rate 0 ≤ p ≤ 3/4 is

N (p)
depol.(ρ) = (1 − p)ρ+ p

3XρX + p

3Y ρY + p

3ZρZ (2.8)

=
(
1 − 4

3p
)
ρ + 4

3p
12
2 . (2.9)

The noise channel is formally defined with an output space P ′ that can differ from the input
space P . While we usually have P ′ = P , it is occasionally convenient to formally include
into P ′ any additional states or memory registers that contain additional information about
the errors that occurred.

We are now in a position to formally define what it means for a code to protect against a
specific type of noise.

An encoding EL→P can correct, or protect against, a noise channel NP →P ′ if there exists
a quantum channel DP ′→L such that

DP ′→L ◦ NP →P ′ ◦ EL→P = idL . (2.10)

We also say that EL→P is N -correcting.

Schematically:

The channel DP ′→L is the decoding channel. (It is sometimes referred to also as recovery
map and denoted by “R” in some literature works, not to be confused with the “R” in
the definition of an encoding map.) This channel includes all operations necessary to undo
the effect of the noise, such as performing measurements, running a classical algorithm to
infer what error happened, and applying any relevant corrections.

In the interest of defining general-purpose error-correcting codes that can correct more
than a very specific error channel N , we formally extend the definition above to identify
the ability of an encoding to protect against an entire family of noise channels. We’ll see
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2.2. PROTECTING AGAINST NOISE

that the requirement that an encoding protects against an entire family of noise channels
need not be particularly restrictive compared to protecting against a single noise channel,
ensuring the existence of useful general-purpose error-correcting codes.

An encoding EL→P can protect against a family {N (α)
P →P ′}α of noise channels if there

exists a single quantum channel DP ′→L such that for all α,

DP ′→L ◦ N (α)
P →P ′ ◦ EL→P = idL (∀ α) . (2.11)

Note that DP ′→L is not allowed to depend on α. Therefore, the ability of EL→P to correct
a family {N (α)

P →P ′}α implies, but is not implied by, the ability to correct each member of
the family.

We obtain a more intuitive picture of what noise channels a given encoding can correct by
studying the Kraus decomposition of the noise channel:

NP →P ′(·) =
∑

k

Ek(·)E†
k , (2.12)

with Ek ∈ CdP ′ ×dP and
∑

k E
†
kEk = 1P .

We can think of the {Ek} as “errors” happening on the system: We can interpret the noise
channel as one of the operators {Ek} being applied on the system, yet without knowledge
of which Ek was applied.

Example: A Kraus representation of the depolarizing noise channel (2.8) can be read off
as:

Noise channels often have Kraus operators of the form E0 ≈ 1 and Ek ≈ 0 (k ≥ 1), like
the depolarizing noise channel. The {Ek}k≥1 can be thought of as nontrivial errors that
the system suffers. In fact, if P ′ = P , any channel N that is close to the identity channel
(with ∥N − idP ∥⋄ ≈ 0) has Kraus operators of this form [1, Lemma 1.3].

It turns out that codes can generally protect against a big family of noise channels, thanks
to the property of the linearity of quantum error correction. This theorem states that
a code that can correct a noise channel with a given set of Kraus operators {Ek} can
automatically correct the entire family of noise channels with Kraus operators that are
linear combinations of the {Ek}.

Theorem 1 (Linearity of quantum error correction). Let EL→P be an isometric encod-
ing map that protects against a noise channel with Kraus representation NP →P ′(·) =∑

k Ek(·)E†
k. Then EL→P protects against the entire family of noise channels whose Kraus

operators lie in the linear span of {Ek}:{
N ′ : N ′(·) =

∑
Fℓ(·)F †

ℓ , Fℓ ∈ span{Ek}
}
. (2.13)
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Recall that the latter statement means that a single decoding channel DP ′→L can ensure
recovery of the logical information regardless of which noise channel from the family is
actually applied.

Proof. Since EL→P corrects NP →P ′ , there exists DP ′→L such that

DP ′→L ◦ NP →P ′ ◦ EL→P = idL . (2.14)

Let KP ′→LF be a Stinespring dilation isometry of DP ′→L, such that

DP ′→L(·) = trF

{
KP ′→LF (·)K†} , (2.15)

and consider the Stinespring dilation of NP →P ′ given by

WP →P ′E =
∑

k

|k⟩E ⊗ Ek ; NP →P ′(·) = trE

{
W (·)W †} . (2.16)

Let |Φ⟩L:R =
∑

i|i⟩L|i⟩R be a maximally entangled ket (nonnormalized state) between L
and a reference system R. The purified process can be visualized as follows:

Because E corrects N [i.e., (2.14)], we have

trEF

{
KP ′→LFWP →P ′EVL→P ΦL:R V

†W †K†} = ΦL:R , (2.17)

where ΦL:R ≡ |Φ⟩⟨Φ|L:R. Since ΦL:R is pure, there exists some state |χ⟩EF such that

KP ′→LFWP →P ′EVL→P |Φ⟩L:R = |Φ⟩L:R ⊗ |χ⟩EF . (2.18)

(If the reduced state of a globally pure quantum state is also pure, the state is necessarily
a tensor product of pure states across the system being traced out and the remaining
system.)

Plugging in the definition of WP →P ′E [Eq. (2.16)], we find for any k that

KP ′→LF Ek VL→P |Φ⟩L:R = |Φ⟩L:R ⊗ (⟨k|E)|χ⟩EF . (2.19)

Now consider any quantum channel N ′(·) =
∑
Fℓ(·)F †

ℓ such that Fℓ ∈ span{Ek}. By
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definition, Fℓ =
∑
αk,ℓEk for some coefficients αk,ℓ ∈ C. Let W ′ =

∑
ℓ|l⟩E ⊗ Fℓ. We find

KP ′→LFW
′
P →P ′EVL→P |Φ⟩L:R

=
∑

ℓ

|ℓ⟩E ⊗
(
KP ′→LFFℓV |Φ⟩L:R

)
=
∑
k,ℓ

|ℓ⟩E ⊗
(
⟨k|E |χ⟩EF ⊗ |Φ⟩L:R

)
= |Φ⟩L:R ⊗

(∑
k,ℓ

αk,ℓ|ℓ⟩⟨k|E |χ⟩EF

)
=: |Φ⟩L:R ⊗ |χ′⟩EF . (2.20)

Therefore,

D(N ′(E(ΦL:R)))
= trEF

{
KP ′→LFW

′
P →P ′EVL→P ΦL:R V

†W ′†K†}
= ΦL:R ⟨χ′ |χ′⟩ = ΦL:R , (2.21)

where the last equality holds because all the maps E , N ′, and D are trace preserving.

Therefore, D ◦ N ′ ◦ E = idL and D is also a decoding channel for N ′. The encoding E can
thus correct (with the same decoding channel D) the entire family of all channels N ′ whose
Kraus operators line in span{Ek}. ■

An important consequence of the linearity of quantum error correction is that rather
than designing encodings for a specific noise channel N , we can focus on a basis of error
operators that span a space containing all errors that we want to be able to correct.

Let’s define an error set Err as any set of operators from P to P ′, subject to the
technical condition that there exists some channel N ′ whose Kraus operators {Ek} satisfy
span{Ek} = span Err. (The condition on Err can be viewed as a technicality that prohibits
us from including an operator in the set Err that cannot be included in any actual c.p., t.p.
noise map whose Kraus operators are linear combinations of elements of Err. The error
sets we’ll consider naturally satisfy this property.)

We say that an encoding EL→P corrects an error set Err if it corrects the family of all
quantum channels whose Kraus operators lie in span Err.

Example: If P consists of n qubits, a basis of all operators on P is the Pauli basis formed
by all tensor products of 1’s and single-qubit Pauli operators (e.g.: X ⊗ 1⊗ Z ⊗ Z). We
can define an error set consisting of those Pauli operators that act nontrivially on at most t
sites (0 < t < n). (The technical condition on Err is satisfied by noting that all these Pauli
operators, scaled by an appropriate constant, form the Kraus operators of some channel.)
As we’ll see, many quantum error-correcting codes are designed to correct precisely this
error set.

2.3 Criteria for quantum error correction

When can an encoding EL→P correct an error set (and therefore the family of quantum
channels with Kraus operators in the set’s linear span)? It turns out that there is a general
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2.3. CRITERIA FOR QUANTUM ERROR CORRECTION

and elegant set of conditions that determine exactly when an isometric encoding can correct
a set of errors. These are the well-known Knill-Laflamme conditions, which is the focus of
this section.

In this section, we’ll focus exclusively on isometric encodings for convenience. More general
encodings will be considered in the next section (Section 2.6).

Theorem 2 (Knill-Laflamme conditions). An isometric encoding EL→P with code space
projector Π corrects an error set Err = span{Ek} if and only if for all k, k′, there exists
ckk′ ∈ C such that

ΠE†
k′EkΠ = ckk′Π . (2.22)

There are several equivalent formulations of the Knill-Laflamme conditions:

Eq. (2.22) ∀ k, k′ ⇔ ΠE†
k′EkΠ ∝ Π ∀ k, k′

⇔ V †E†
k′EkV ∝ 1L ∀ k, k′

⇔ ∃ ckk′ : ∀ |ψ⟩ ∈ C : ⟨ψ |E†
k′Ek |ψ⟩ = ckk′

⇔ ∃ ckk′ : ∀ i, j : ⟨ψj |E†
k′Ek |ψi⟩ = δi,j ckk′ ,

⇔ ΠE′†EΠ ∝ Π ∀ E,E′ ∈ Err
⇔ ΠM †

ℓ′MℓΠ ∝ Π ∀ ℓ, ℓ′ , (2.23)

where VL→P is the isometry defining the isometric encoding, C is the corresponding code
space, |ψj⟩ = VL→P |j⟩L are the computational basis code words, δi,j is the Kronecker delta
symbol (δi,j = 1 if i = j and δi,j = 0 if i ̸= j), and {Mℓ} is any other set of operators with
Err = span{Mℓ}.

Exercise: Prove the above equivalences.

The Knill-Laflamme conditions (2.22) imply that a pair of an error operator and the
adjoint of another error cannot map one codeword to a state that has overlap with another
codeword:

⟨ψj |E†
k′Ek |ψi⟩ = 0 ∀ i ̸= j, ∀ k, k′ . (2.24)

We can ask why the pair E†
k′Ek appears in (2.24), rather than a single error operator Ek.

Why does it not suffice that a single error operator Ek not map a code word |ψi⟩ to a
state with overlap with a different code word |ψj⟩, i.e., ⟨ψj |Ek |ψi⟩ = 0 ∀ i ̸= j, ∀ k? The
answer is that to correct errors, we need a state of the form Ek|ψi⟩ to be orthogonal to
any other state of the same form Ek′ |ψj⟩ where j ̸= i, or else we would be unable to tell if
the error Ek occurred on the code word |ψi⟩ or if Ek′ occurred on the code word |ψj⟩. The
overlap of two such states is precisely given by ⟨ψj |E†

k′Ek |ψi⟩.

The coefficient matrix [ckk′ ]k,k′ is Hermitian, ckk′ = c∗
k′k, as can be seen by taking the

adjoint of Equation Eq. (2.22) and reversing the roles of k and k′. As a consequence, we
can diagonalize [ckk′ ] as ∑

k,k′

ukℓ ckk′ u∗
k′ℓ′ = λℓ δℓ,ℓ′ , (2.25)
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where [ukℓ] is a unitary matrix. Now let

E′
ℓ =

∑
k

ukℓEk . (2.26)

We find

ΠE′
ℓ′E′

ℓΠ =
∑
k,k′

ukℓu
∗
k′ℓ′ ΠE†

k′EkΠ︸ ︷︷ ︸
ckk′ Π

= λℓ δℓ,ℓ′ Π . (2.27)

Therefore, for any set of generating errors {Ek}, the transformed set of generating er-
rors (2.26) diagonalizes the [ckk′ ] coefficients. If {Ek} are the Kraus operators of some noise
channel N , then recall that the transformation (2.26) yields operators E′

ℓ that are simply
another Kraus representation of the same noise channel.

Let’s choose a basis {Ek} of error operators that diagonalize the Knill-Laflamme conditions.
We see that the Knill-Laflamme conditions imply that each Ek maps the code space to
different, orthogonal subspaces:

We can thus determine which error happened without perturbing the logical state, by
measuring which subspace EkC the state lies in without resolving the states within each
subspace. The correction then amounts to applying a suitable unitary that maps the error
space EkC back onto C.

If the matrix [ckk′ ] has maximal rank, the code is said to be nondegenerate. In this case,
there is a basis {Ek} of the span of the error operators such that the subspaces {EkC} are
all nontrivial and pairwise orthogonal.

Otherwise, the code is said to be degenerate. If the code is degenerate, a basis {Ek} that
diagonalizes [ckk′ ] must contain one or more element(s) Ek that annihilate the code space:
EkC = 0. (Indeed, if [ckk′ ] does not have maximal rank, then one or more of the λk’s must
vanish.) These errors can never happen as long as the state lies in the code space!

Proof of Theorem 2. From the definition of an error set, we can choose without loss of
generality the {Ek} both to span the space span Err as well as to be the Kraus operators
of some channel NP →P ′ . (We’ve already seen that the Knill-Laflamme conditions do not
depend on the elements chosen to span the space span Err.) The proof strategy is to show
that the Knill-Laflamme conditions (2.22) are both necessary and sufficient for correcting
the given set of errors.

The Knill-Laflamme conditions are necessary: By assumption, there exists a quantum
channel DP ′→L such that DP ′→L ◦ NP →P ′ ◦ EL→P = idL. Denote by {Rℓ} a set of Kraus
operators of DP ′→L, noting that

∑
ℓR

†
ℓRℓ = 1P ′ . Let KP ′→LF =

∑
ℓ|ℓ⟩F ⊗Rℓ, and observe

that KP ′→LF is a Stinespring dilation isometry of DP ′→L, with

DP ′→L(·) = trF

{
KP ′→LF (·)K†} . (2.28)
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Let as before

WP →P ′E =
∑

k

|k⟩E ⊗ Ek ; N (·) = trE

{
W (·)W †} , (2.29)

and |Φ⟩L:R =
∑

|i⟩L|i⟩R. As we saw earlier (cf. proof of Theorem 1), there exists |χ⟩EF

such that

KP ′→LF WP →P ′E VL→P |Φ⟩L:R = |Φ⟩L:R ⊗ |χ⟩EF . (2.30)

Multiplying on the left by (⟨k|E ⊗ ⟨ℓ|F ), we find

RℓEk V |Φ⟩L:R = (⟨k|E ⊗ ⟨ℓ|F )|χ⟩EF︸ ︷︷ ︸
=: µkℓ

|Φ⟩L:R . (2.31)

Therefore, there exists µkℓ ∈ C such that RℓEkV = µkℓ1L. Now, for any k, k′ we have

V †E†
k′EkV = V †Ek′

(∑
ℓ

R†
ℓRℓ

)
EkV

=
∑

ℓ

(V †E†
k′R

†
ℓ)(RℓEkV ) =

(∑
ℓ

µ∗
kℓµk′ℓ

)
1L =: ckk′1L . (2.32)

Therefore, the Knill-Laflamme conditions are satisfied.

The Knill-Laflamme conditions are sufficient: We assume that (2.22) hold true, and our
goal is to construct a map DP ′→L such that D ◦ N ◦ E = idL. By linearity of quantum
error correction, the latter statement imples that E can correct the error set Err.

We’ve seen that the operators {Ek} can be transformed via (2.26) to a set of operators
{E′

ℓ} which represent the same quantum channel NP →P ′ and which diagonalize the Knill-
Laflamme conditions:

V †E′†
ℓ′E

′
ℓV = λℓ δℓ,ℓ′ 1L ∀ ℓ, ℓ′ . (2.33)

Furthermore, taking the sum of this equation over ℓ with ℓ′ = ℓ gives(∑
ℓ

λℓ

)
1L =

∑
ℓ

V †E′†
ℓ E

′
ℓV = V †

(∑
E′†

ℓ E
′
ℓ

)
V = 1L , (2.34)

so we see that
∑
λℓ = 1.

We can now begin defining Kraus operators for our decoding channel DP ′→L. Let

Rℓ = 1√
λℓ
V †E′†

ℓ . (2.35)

We now study the operator

Q =
∑

ℓ

R†
ℓRℓ . (2.36)

To ensure that the operators {Rℓ} form the Kraus operators of some quantum channels,
we would need Q = 1. But it turns out this is not the case yet in general. Indeed, Q is
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Hermitian and is a projector:

Q2 =
∑
ℓ,ℓ′

1
λℓλℓ′

E′
ℓ′V V †E′†

ℓ′E
′
ℓV︸ ︷︷ ︸

δℓ,ℓ′ λℓ

V †E†
ℓ =

∑
ℓ

1
λℓ
E′

ℓV V
†E′†

ℓ = Q . (2.37)

We see that Q projects onto the subspace of states span{Ek|ψj⟩} reachable by applying an
error to a state in the code space.

To define D as a valid quantum channel, we set:

DP ′→L(·) =
∑

ℓ

Rℓ (·)R†
ℓ + (1−Q)(·)(1−Q) . (2.38)

(We could replace the last term with any other term that acts only on the subspace
orthogonal to the support of Q.)

Let’s now check that D successfully recovers the corrupted information. For any |ϕ⟩L, we
find

D ◦ N ◦ E(ϕL) =
∑
ℓ,ℓ′

Rℓ′E′
ℓV ϕV

†E′†
ℓ R

†
ℓ′

=
∑
ℓ,ℓ′

1
λℓ′

V †E′†
ℓ′E

′
ℓV︸ ︷︷ ︸

=δℓ,ℓ′ λℓ

ϕL V †E′†
ℓ E

′
ℓ′V︸ ︷︷ ︸

=δℓ,ℓ′ λℓ

=
(∑

λℓ

)
ϕL = ϕL . (2.39)

Therefore, D ◦ N ◦ E = idL as desired. ■

2.4 Error-detecting codes

Sometimes, we might only care about determining whether an error happened, without
worrying about correcting it. In such a case we can, perhaps, throw the system away and
start again.

To detect errors, we use an isometric encoding EL→P to store the logical information |ϕ⟩L

on the physical system as a state |ψ⟩P . The physical system is then exposed to a noise
channel NP →P ′ . Rather than attempting to recover the logical information, as in the case
of quantum error correction, we demand that the two-outcome measurement with POVM
effects {Π,1− Π} behave as follows:

• The outcome 1− Π signifies an error has occurred and our system needs to be thrown
away;

• If we obtain the outcome Π, then the state projected by the measurement is again
|ψ⟩P , up to normalization associated with the probability of this outcome.

We say an isometric encoding map EL→P can detect errors from an error set Err if a
measurement of the POVM {Π,1 − Π} can identify the presence of an error without
corrupting the logical state:

ΠE|ψ⟩ ∝ |ψ⟩ ∀ |ψ⟩ ∈ C, ∀ E ∈ Err . (2.40)
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It turns out that a set of conditions characterize quantum error-detecting codes in a way
reminiscent of the Knill-Laflamme conditions for quantum error correction.

Theorem 3 (Conditions for a quantum error-detecting code). An isometric encoding
EL→P can detect errors from Err = span{Ek} if and only if ΠEkΠ ∝ Π for all k.

Exercise: Prove the above statement.

Error-detecting codes are closely connected to an error model that we’ll cover in the next
chapter, namely erasure errors, that applies to encodings on a physical space consisting of
multiple subsystems.

2.5 Nearly correctable errors

What if an error E′ happens that is not strictly in span Err, but which might have high
overlap with a correctable error E ∈ span Err? Intuitively, the code should be able to
“correct approximately” E′.

We quantify the distinguishability of two quantum channels N ,N ′ with the diamond
distance

1
2
∥∥N ′ − N

∥∥
⋄ = sup

σ

1
2
∥∥(N ′ ⊗ id)(σ) − (N ⊗ id)(σ)

∥∥
1 . (2.41)

If 1
2∥N ′ − N ∥⋄ ≤ ϵ, then we cannot distinguish N from N ′ except with probability ∼ ϵ

better than a random guess.

If an encoding EL→P corrects a noise channel NP →P ′ , then applying the same decoding
channel DP ′→L to another noise channel N ′

P →P ′ with 1
2∥N ′ − N ∥⋄ ≤ ϵ recovers the logical

state with an error tolerance ≤ ϵ in trace distance: For any reference system R and for any
σLR,

1
2∥DN ′E(σLR) − σLR∥1 ≤ 1

2∥DN ′E − idL∥⋄ = 1
2∥DN ′E − DN E∥⋄

≤ 1
2∥D(N ′ − N )E∥⋄ ≤ 1

2∥N ′ − N ∥⋄ ≤ ϵ , (2.42)

where we recall that the diamond norm is submultiplicative, ∥N M∥⋄ ≤ ∥N ∥⋄∥M∥⋄ and
that any c.p., t.p. map has diamond norm equal to one. Therefore, any noise channel
that is close to a correctable noise channel in diamond norm can only weakly confuse the
decoding channel in restoring the logical information.

The diamond distance between noise channels might be cumbersome to compute. Fortuntely,
we can employ standard matrix analysis techniques and norm inequalities to bound the
diamond norm between two noise channels in terms of the norm of pairs of Kraus operators.
Suppose N ′(·) =

∑m
k=1E

′
k (·)E′†

k with some Kraus operators {E′
k}m

k=1, and suppose that
there exists a quantum channel N (·) =

∑m
k=1Ek (·)E†

k with Ek ∈ span Err and such that
for all k = 1, . . . ,m, we have ∥Ek − E′

k∥∞ ≤ ϵ. Then 1
2∥N ′ − N ∥⋄ ≤ 3mϵ.

Exercise: Prove the latter inequality.

It is natural to define a notion of approximate quantum error correction, where a degree of
imperfection is allowed during the recovery of the logical information. A natural definition,
for instance, is the following:
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Let EL→P be an encoding map and let NP →P ′ be any quantum channel. Let ϵ ≥ 0. We
say the encoding E can ϵ-approximately protect against N if there exists a quantum
channel DP ′→L such that

∥DN E − idL∥⋄ ≤ ϵ . (2.43)

In this lecture, we’ll focus on exact quantum error-correcting codes. It turns out that
for common noise models, such as when noise acts independently on each qubit of a
n-qubit system, we can replace the noise by a similar noise model for which we can develop
exact error-correcting codes. Such considerations enable us to avoid the formalities and
technicalities of the framework of approximate error correction.

We’ll see, however, that the strict framework of exact quantum error correction is insufficient
to develop some of the more important results that we’ll cover later on in the context of
fault tolerance.

2.6 The environment’s perspective

It turns out that quantum information theory gives us a powerful technique to analyze
quantum error-correcting codes by studying what information leaks to the environment.

This section is not strictly essential to understanding the remainder of this course, but
presents an information-theoretic picture that brings additional clarity to the concept
of quantum error correction and to the interpretation of the Knill-Laflamme conditions.
As a plus, we’ll be extending some of the above concepts to encoding maps that are not
isometric.

A remarkable property of processes in quantum information theory is that they can always
be viewed as a “part” of some unitary process that involves an additional quantum system.
The Stinespring dilation indeed guarantees that any quantum channel MA→B can be
viewed as an isometric embedding of the states of A onto joint states of B and an additional
system E (the “environment”), followed by a partial trace on E. (The isometry can be
replaced by a unitary, provided the input environment system is chosen of a suitable
dimension and is initialized in a fixed pure state.)

This picture tells us that quantum information cannot be destroyed—it always has to go
somewhere. If we can’t find it at the output of a process, it must have flowed, at least in
part, to the environment. Conversely, if the environment E obtains any information about
the input state of M, then the no-cloning principle dictates that the state cannot be fully
recovered from the output of M.

We’ve seen that a noise channel NP →P ′ with Kraus operators {Ek} can be written in
Stinespring form as

N (·) = trE

{
WP →P ′E (·)W †

}
; WP →P ′E =

∑
Ek ⊗ |k⟩E . (2.44)

We can interpret the action of N as follows: One of the {Ek}’s is applied on the system,
without us knowing which Ek occurred; simultaneously, the information about which
Ek occurred is supplied to the environment E. The environment can be thought of an
adversary who, by gleaning information about the system P , can ruin our ability to recover
that information from the channel’s output P ′.
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Let’s now study more specifically how any information learned by the environment can
affect our ability to recover information encoded in the physical system. For this, we first
consider the channel that describes what information the environment learns from the
action of a quantum process.

Given any quantum channel MA→B, we define a complementary channel M̂A→E to
MA→B as any channel that can be expressed in the form

M̂A→E(·) = trB

{
UA→BE (·)U †

}
, (2.45)

where UA→BE is any Stinespring dilation isometry of M, i.e., an isometry such that
MA→B(·) = trE

{
U (·)U †}.

Different choices of a Stinespring dilation isometry give rise to different choices of com-
plementary channels. Complementary channels may also differ in their output system
dimensions.

If we fix a Stinespring isometry UA→BE along with its environment system E, we obtain
MA→B by tracing out E and we obtain M̂A→E by tracing out B:

MA→B = trE

{
UA→BE (·)U †

}
; (2.46)

M̂A→E = trB

{
UA→BE (·)U †

}
. (2.47)

The system B is then the Stinespring environment of M̂:

In the same way that all Stinespring dilations of a channel are equivalent up to a partial
isometry on the environment, all complementary channels are equivalent up to a partial
isometry applied onto their output.

Exercise: Suppose MA→B(·) =
∑
Mk (·)M †

k . Show that the channel

M̂A→E(·) =
∑
k,k′

tr
(
M †

k′Mk (·)
)

|k⟩⟨k′| (2.48)

is a complementary channel of MA→B.

The complementary channel describes information that leaks to the environment during the
application of a channel. If the channel is unitary, no information leaks to the environment:
The complementary channel is a constant channel that always prepares a fixed state.
Otherwise, the environment represents all the information required to purify the output of
the channel whenever the input is a pure state.

Example: The amplitude damping channel describes the relaxation of a two-level system
to its ground state while emitting a photon which is lost to the environment. The
complementary channel describes the emission of this photon.
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In quantum error correction, we need to ensure the environment does not receive any
information about the encoded logical quantum state, or else the no-cloning theorem would
jeopardize our ability to recover the encoded state from the output of the noise channel.

Theorem 4 (Conditions for quantum error correction via the complementary noise channel).
Let EL→P be any encoding map and let NP →P ′ be any quantum channel. Let [N̂ ◦ E ]L→Ẽ

be a complementary channel to N ◦ E, mapping input states on L to an environment system
Ẽ. Are then equivalent:

(i) The encoding EL→P can correct NP →P ′;

(ii) There exists a state τẼ such that

[N̂ ◦ E ]L→Ẽ(·) = tr(·) τẼ , (2.49)

i.e., [N̂ ◦ E ]L→Ẽ is a constant channel that always outputs τẼ;

(iii) For all operators OẼ, we have

[N̂ ◦ E ]†
L→Ẽ

(OẼ) = c(OẼ)1L , (2.50)

for some scalar c(OẼ) ∈ C;

(iv) For all operators OẼ, and for any operator AL on HL, we have[
[N̂ ◦ E ]†

L→Ẽ
(OẼ) , AL

]
= 0 . (2.51)

Point (ii) states that the environment receives no information about the state that is input
to the encoding map.

Point (iii) makes reference to the Heisenberg picture for the evolution of observables. It
states that the environment’s observables, when mapped back onto the input through the
adjoint of the full complementary map, can only act trivially on the logical system (∝ 1L).

Point (iv) expresses a similar idea: The environment cannot apply any operator on the
logical input (via the adjoint of the complementary channel) that can disturb, i.e. fail to
commute with, any logical observable.

The complementary channel [N̂ ◦ E ]L→Ẽ , if constructed from Stinespring dilations of E
and N , must include both environments present in these dilations:
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(In our earlier study of the Knill-Laflamme conditions, we didn’t have to worry about the
environment of E , since we restricted our attention to isometric encodings.)

The condition in Point (iii) is an extension of the Knill-Laflamme conditions to encoding
maps that are not isometric. We recover the Knill-Laflamme conditions (2.22) if E is
isometric: In this case, N̂ ◦ E = N̂ ◦ E and Ẽ = E consists only of the Stinespring
environment of N . We can thus pick

N̂ ◦ E(·) = N̂ (V (·)V †) ; N̂ (·) =
∑
k,k′

tr
(
E†

k′Ek (·)
)

|k⟩⟨k′|E , (2.52)

where {Ek} are a choice of Kraus operators of N and V is the encoding isometry. Equiva-
lently, we can write for all k, k′,

tr
[
N̂ (·)|k′⟩⟨k|

]
= tr

(
E†

k′Ek (·)
)
. (2.53)

By definition of the adjoint map, and since the equation is true for any operator we choose
to plug into (·),

N̂ †(|k′⟩⟨k|) = E†
k′Ek . (2.54)

Applying V †(·)V , we finally see that

N̂ ◦ E(|k′⟩⟨k|) = V †N̂ †(|k′⟩⟨k|)V = V †E†
k′EkV . (2.55)

Now let’s inspect the condition given in Point (iii). Because |k′⟩⟨k|E is a basis of all
operators on Ẽ = E, the condition (iii) reduces using (2.55) to

V †E†
k′EkV = c(|k′⟩⟨k|)1L , (2.56)

which is precisely the Knill-Laflamme conditions we derived earlier.

Proof of Theorem 4. (i)⇒(ii): Let W̃L→P ′Ẽ denote a Stinespring dilation isometry of
N ◦ E , such that

[N ◦ E ]L→P ′(·) = trẼ

{
W̃ (·) W̃ †} ; (2.57)

[N̂ ◦ E ]L→Ẽ(·) = trP ′
{
W̃ (·) W̃ †} . (2.58)

By assumption, there exists a quantum channel DP ′→L such that D ◦ N ◦ E = idL; let
KP ′→LF be a Stinespring dilation of D with

DP ′→L(·) = trF

{
KP ′→LF (·)K†} . (2.59)

With |Φ⟩L:R =
∑

|i⟩L|i⟩R, we have

ΦL:R = [D ◦ N ◦ E ](ΦL:R) = trẼF

{
KP ′→LF W̃L→ẼP ′ ΦL:R W̃

†K†} , (2.60)

and therefore there exists some pure quantum state |χ⟩ẼF such that

KP ′→LF W̃L→ẼP ′ ΦL:R W̃
†K† = ΦL:R ⊗ χẼF . (2.61)
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Then

N̂ ◦ E(ΦL:R) = trP ′
{
W̃L→P ′Ẽ ΦL:R W̃

†}
= trLF

{
KP ′→LF W̃L→P ′Ẽ ΦL:R W̃K†}

= trLF

{
ΦL:R ⊗ χẼF

}
= 1R ⊗ χẼ , (2.62)

where we inserted 1P ′ = K†K inside the trace to obtain the second equality.

We identify in (2.62) the Choi matrix of the channel that always outputs χẼ , regardless of
its input; i.e.,

N̂ ◦ E(·) = tr(·)χẼ . (2.63)

(ii)⇔(iii)⇔(iv): The adjoint of the channel Tτ (·) = tr(·) τ is T †
τ (·) = tr[τ (·)]1 and vice

versa. Furthermore, 1 commutes with all operators, and is the only operator with this
property.

(iv)⇒(i): We assume N̂ ◦ E = tr(·) τẼ . Then

N̂ ◦ E(ΦL:R) = 1R ⊗ τẼ . (2.64)

We can purify this nonnormalized state on the system L (recall HL ≃ HR) along with
another large enough system F , as:

N̂ ◦ E(ΦL:R) = trẼF

{
|Φ⟩⟨Φ|L:R ⊗ |τ⟩⟨τ |ẼF

}
, (2.65)

where |τ⟩ẼF is a purification of τẼ .

Another purification of (2.64) is

N̂ ◦ E(ΦL:R) = trP ′
{
W̃L→P ′Ẽ ΦL:R W̃

†} , (2.66)

where W̃L→P ′Ẽ is the Stinespring dilation of N ◦ E that served to define the complementary
channel N̂ ◦ E .

Two purifications of the same state are always related by a partial isometry on the purifying
systems: There must exist a partial isometry UP ′→LF such that

|Φ⟩⟨Φ|L:R ⊗ |τ⟩⟨τ |ẼF = UP ′→LF W̃L→P ′Ẽ |Φ⟩⟨Φ|L:R W̃
†U † . (2.67)

As long as we choose F large enough, UP ′→LF can be completed to an isometry by adding
terms that send the kernel of U isometrically to some subspace that is orthogonal to the
image of U . Denote by U ′

P ′→LF the isometry obtained in this fashion.

We may now define DP ′→L as the quantum channel whose Stinespring dilation isometry is
U ′

P ′→LF :

DP ′→L(·) = trF

{
U ′

P ′→LF (·)U ′†} . (2.68)

We find

D ◦ N ◦ E(ΦL:R) = trẼF

{
U ′

P ′→LF W̃L→P ′Ẽ ΦL:R W̃
†U ′†}

= trẼF

{
ΦL:R ⊗ τẼF

}
= ΦL:R . (2.69)

Therefore D ◦ N ◦ E = idL, as claimed. ■
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2.7. FURTHER READING

This theorem offers an appealing approach to characterize the setting of approximate
quantum error correction introduced in Section 2.5. Points (i) and (ii) can be made
approximate in order to find conditions for approximate quantum error correction that
resemble the Knill-Laflamme conditions. Namely, we can show there exists D such that
D ◦ N ◦ E ≈ idL if and only if N̂ ◦ E ≈ T for some channel T that traces out its output
and always outputs a fixed state (a constant channel). The approximation symbols ‘≈’
refer to proximity measured by a suitable distance on channels.

2.7 Further reading

I recommended reading of course Chapters 1 and 2 in Gottesman’s book for a detailed
construction of the theory of quantum error correction. Another strongly recommended
reference, which also influenced the writing of this chapter, is John Preskill’s lecture
notes [3]. The fundamental theory of quantum error correction is also presented in the
various references listed in the “Recommended literature” section in the preface, including
in the Nielsen and Chuang textbook [4].

The approach to defining quantum error correction presented here centers around the
ability to reverse the effect of noise channels; it differs slightly from the approach presented
in Gottesman’s book [1], which focuses on the ability to correct sets of operators. As
presented in Gottesman’s book, a quantum error-correcting code can be defined as an
encoding isometry along with a set of error operators such that the errors are correctable.

Some original papers in which the fundamental theory of quantum error correction was
developed can be insightful and give useful context, see for instance Knill and Laflamme’s
original paper [24].

A quantum information-theoretic approach is particularly useful to understand how the
environment can affect our ability to reverse the effect of a quantum noise channel [25–27].
Quantum error correction can also be characterized in the picture of operator algebras [28,
29].
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Chapter 3

Fundamental Theory of Quantum Error Correction II:
Encoding information on multiple subsystems

This chapter is a continuation of the previous chapter on the fundamental concepts of
quantum error correction. The definitions and concepts we present here apply to the case
of encodings that involve n subsystems and that are designed to correct local errors. This
is still a very general setting, and most of the course will refer to this scenario.

Specifically, we make the following assumptions in this chapter:

• The logical space L consists of k particles, where each particle is a q-dimensional
system, such that HL ≃ Cqk ;

• The physical space P consists of n particles, where each particle is a q-dimensional
system, such that HP ≃ Cqn ;

• Unless specified otherwise, the encoding maps EL→P we consider are isometric, with
encoding isometry that we denote by VL→P . As we’ve seen in the previous chapter,
such encodings have a well-defined notion of a code space C and code space projector
Π = V V †.

In summary, an isometric encoding maps the logical space, which consists of k qudits of
local dimension q, to the physical space, which consists of n such qudits. In the special
case q = 2, the subsystems are simply qubits. Each subsystem is referred to as a “particle,”
to emphasize its role as an elementary constituent of the logical and physical spaces. You
are welcome to mentally replace “particle” by “qubit” in this chapter, though the more
general terminology will help us remember these concepts apply to q ̸= 2 as well.

This setting is very natural in quantum error correction and, apart from the notable
exception of bosonic codes, encompasses most of the effort in developing quantum error
correction for quantum computers. Most of the time, we’ll think of the particles as hardware
qubits, which might be laid out on a chip with a suitable connectivity enabling two-qubit
gates to be applied on neighboring qubits.

The concepts in this chapter naturally extend to the case where each individual logical
and physical particle has a different local Hilbert space dimension. Perhaps we might be
interested in encoding a combined logical qubit and a logical qutrit in a physical space
consisting of five qubits, two qutrits, and four 10-dimensional qudits. For simplicity and to
avoid tedious notation, we present these concepts in the case where each particle has the
same dimensionality q.
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3.1. WEIGHTS OF ERRORS

3.1 Weights of errors

Suppose that each physical particle is subject to a noise channel N1 independently of the
other particles, with

N1(·) = A0 (·)A†
0 +

m∑
k=1

Ak (·)A†
k ; (3.1)

A0 ≈ 1 ; Ak = O(√p) for k = 1, . . . ,m ,

where A0, A1, . . . , Am are the Kraus operators of N1 which depend on a parameter p that
parametrizes the intensity of the noise. We assume that p ≈ 0 and that N1 equals the
identity channel if p = 0.

The n particles are then subject to the noise channel N1 ⊗ N1 ⊗ · · · ⊗ N1 ≡ N ⊗n
1 . The

Kraus operators of the global channel can be given as:

N ⊗n
1 (·) =

∑
x∈{0,...,m}×n

Ex (·)E†
x ; Ex ≡

n⊗
i=1

Axi . (3.2)

I.e., the global Kraus operators are indexed by a string x that indicates which Kraus
operator to apply on which particle.

A state (or channel) of the form ρ⊗n (or N ⊗n
1 ) is called an independent and identically

distributed (i.i.d.) state (or channel), marking the fact that the state or channel acts
independently and in the same way on each of n copies of a system. The Kraus operators
associated with an i.i.d. channel are of the form given in (3.2).

Example: Suppose that N1(·) = (1 − p)1 (·)1 + pZ (·)Z. Specifically, A0 =
√

1 − p1
and A1 = √

pZ with m = 1. Then N ⊗n
1 has Kraus operators:

We see that, in general, Ex consists of some number w of Kraus operators that are nontrivial
(indexed by xi ̸= 0) and n− w copies of A0. This observation motivates the definition of
the weight of the string x:

The weight wgt(x) of the string x ∈ {0, . . . ,m}×n is defined as the number of locations i
for which xi ̸= 0.

Since Ex contains a product of wgt(x) Kraus operators with xi ̸= 0, we see that Ex =
O(
√
pwgt(x)). This implies that the probability of the error Ex occurring is suppressed

exponentially in wgt(x):

Pr[Ex] = O(p− wgt(x)) . (3.3)

Instead of having to deal with all possible errors {Ex}, it is natural to focus on only those
errors with wgt(x) ≤ t for some fixed t > 0. The errors we leave out have a probability of
occurring that is exponentially suppressed in t (at fixed n). Furthermore, the operator Ex

acts nontrivially essentially on wgt(x) particles only, since A0 ≈ 1. We’ll see in a moment
how this observation significantly simplifies the analysis of the error-correcting properties
of the code.
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In other words, we start from the noise channel (3.2) and we make two approximations.
First, we ignore Kraus operators Ex with wgt(x) ≤ t, which have a probability of occurring
that is exponentially suppressed in t. Second, we replace each remaining Ex by a nearby
operator that acts nontrivially only on at most t particles and that acts as the identity on
all remaining particles.

Formally, the step of replacing the i.i.d. noise channel of (3.2) by a noise channel with
Kraus operators that act nontrivially on exclusively ≤ t particles must be accompanied
by an upper bound on the diamond distance between the original noise channel and the
alternative noise channel (cf. Section 2.5). We refer to Ref. [1, Theorem 1.1] for the detailed
derivation of such a bound.

We’ll proceed with this approximation for now, which is a foundation on which important
concepts of n-particle quantum error-correcting codes rely on. I’ll sneak in a word of caution
though. We argued that we can ignore errors Ex whose probability are exponentially
suppressed in some parameter t. But what if there are exponentially many possible errors
with this property? This is typically the case for i.i.d. noise if we scale to large n. In
such a case, the probability of some weight-w error might remain significant, despite the
probability of an individual error decaying exponentially in w; the approximation above
might be inaccurate. We’ll revisit this issue when we start discussing concepts of fault
tolerance.

One of the happy twists of quantum error correction is that it turns out to be possible to
design good general-purpose codes that can not only correct errors Ex with low-weight x
of a fixed noise model, but that can also simultaneously correct such errors for any noise
model with the structure of the form (3.2). Intuitively, designing good n-particle codes
means being able to correct arbitrary errors that act on few (≤ t) particles. This idea is
formalized through the concepts of the weight of an operator and the distance of a code.

The weight wgt(E) of an operator E acting on P is the number of particles on which E
acts nontrivally. Specifically, it is the size |I| of the smallest set I of indices such that

E = EI ⊗ 1Ic , (3.4)

where EI acts on the particles indexed by I and where Ic is the complementary set of I in
{1, 2, . . . , n}.

For example, wgt(X ⊗X ⊗ 1⊗ Z ⊗ 1⊗ Y ) = 4 and wgt(11 ⊗O23 ⊗ 14 ⊗ Z5) = 3.

Thanks to the linearity of quantum error correction (Theorem 1), the ability to correct all
errors of weight at most t automatically implies the ability to correct any linear combination
of operators of weight at most t.

A linear combination of low-weight operators can have a high weight according to the
definition above. But such linear combinations still very much behave like low-weight
operators for the purposes of quantum error correction, as correctability of the latter
implies correctability of the former. Such linear combinations are markedly different from
most high-weight operators (such as X⊗X⊗· · ·⊗X) which, generically, cannot be written
as linear combinations of low-weight operators.

For t ≥ 0, we define a t-particle error as any linear combination of operators of weight
at most t. Specifically, E is a t-particle error if

E =
∑

j

Aj ; wgt(Aj) ≤ t ∀ j . (3.5)
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Most quantum error-correcting codes we’ll study in this course are designed to correct the
set of all t-particle errors

Errt =
{
E : E =

∑
Aj , wgt(Aj) ≤ t ∀ j

}
. (3.6)

3.2 Code distance

In order to quantify the ability of a code to protect against errors, we introduce the notion
of distance of the code. The distance of a code tells us “how large” an operator we need to
apply on the physical system in order to effect a nontrivial logical action on the code space.

We define the distance d of a n-particle code as the minimal weight wgt(E) of an operator
E that satisfies ΠEΠ ̸∝ Π:

d = min
{
w : ∃ E with wgt(E) = w and ΠEΠ ̸∝ Π

}
. (3.7)

A quantum code that encodes k qubits into n qubits (setting q = 2) and that has a distance
d is called a [[n, k, d]] code.

This notation is sometimes extended to the case q ̸= 2: A code that encodes k qudits into
n qudits is somtimes designated as a [[n, k, d]]q code or a ((n, qk, d))q code. Furthermore,
in some references the notation [[n, k, d]] is reserved for qubit stabilizer codes, which we’ll
introduce in the next chapter.

Theorem 5. A n-particle code can correct the set Errt of all t-particle errors if and only
if its distance d satisfies

d ≥ 2t+ 1 . (3.8)

Proof. Let {Ek} be a set of operators with wgt(Ek) ≤ t and such that Errt = span{Ek}.
Consider an operator of the form E†

k′Ek. Its weight is at most 2t, since each Ek acts on at
most t particles nontrivially.

If d ≥ 2t + 1, then 2t < d and ΠE†
k′EkΠ ∝ Π by definition of the distance, so the

Knill-Laflamme conditions are satisfied.

Conversely, suppose the Knill-Laflamme conditions are satisfied. Let’s first pick any tensor
product basis of the 2t-particle operator space, i.e., a basis whose elements are all tensor
products across the 2t particles. (The existence of such a basis follows from the definition
of the tensor product. For qubits, we can also choose the Pauli basis). Any such basis
element can be viewed as a product of two operators of weight at most t, and can thus be
written as a linear combination of operators of the form E†

k′Ek. Now let E be any operator
of weight at most 2t. By decomposing E in such a basis, we see that E can be written out
as a linear combination of operators of the form E†

k′Ek. By the Knill-Laflamme conditions,
we find that ΠEΠ ∝ E. In other words, for an operator E′ to satisfy ΠE′Π ̸∝ Π, we must
have wgt(E′) > 2t. The distance must therefore satisfy d ≥ 2t+ 1. ■

Exercise: Show that a n-particle code can detect errors up to weight d− 1, i.e., it can detect
errors from the error set Errd−1.
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3.3 Erasure errors

An erasure channel NEras. I traces out a subset I of the n particles, and replaces their
state by some fixed state χI :

NEras. I(·) = trI

{
(·)
}

⊗ χI . (3.9)

Such a channel can model the loss of a particle carrier of quantum information, such as a
photon, along with the information it was carrying. We assume that we can measure the
presence or absence of the particle without disturbing any carried information. As it turns
out, the knowledge that a carrier is lost provides an advantage in restoring the encoded
logical information as opposed to an error that happens surreptitiously.

. In the case of erasure errors, we have absolute knowledge about exactly
which particles are affected by the erasure. The rather naive channel NEras. I in (3.9)
even corresponds to the case where the systems that will be lost are entirely predetermined
and are represented by I.

A more interesting setting is where the subset I of particles that are erased is chosen at
random. While we don’t know in advance which particle(s) will be erased, we still assume
that we are given full knowledge of which particles are affected by the erasure after the
erasure happens. This knowledge can be modeled explicitly by having the channel produce
a state on an additional memory register, storing the labels of the erased particles. We call
such a channel an ℓ-particle erasure channel.

An ℓ-particle erasure channel is a channel of the form

NEras. ℓ(·) =
∑

I⊂{1,...,n}
|I|≤ℓ

pI trI

{
(·)} ⊗ χI ⊗ |“I”⟩⟨“I”|X , (3.10)

where {pI} is a probability distribution, χI is any fixed state on the particles indexed by I,
and X is an additional classical memory register. (Note that the sum only involves terms
with |I| ≤ ℓ.)

An ℓ-particle erasure channel will formally have an output space P ′ that is larger than P ,
given that it has to store the information about which particles are erased. Also, we’ll
occasionally assume in (3.9) and in (3.10) that χI is a pure state, although this is mostly
an issue of technical convenience.

Another common method to model the knowledge of which particles suffered an erasure is
to embed the q-dimensional particle’s state space into a (q + 1)-dimensional space that
contains an additional state |ERASED⟩. Whenever the particle is erased, it is reset to the
state |ERASED⟩. This corresponds to setting |χI⟩ = |ERASED⟩⊗|I|

I in (3.10). A subse-
quent measurement of each particle according to the POVM

{
|ERASED⟩⟨ERASED|,1−

|ERASED⟩⟨ERASED|
}

reveals exactly which particles suffered an erasure, without com-
promising the state of the unaffected particles. In this case, the memory register X in (3.10)
provides no additional information and can be omitted.

A (ℓ = 1)-particle erasure channel can be represented in terms of Kraus operators by
resolving the partial trace on the i-th particle explicitly as tri(·) =

∑
j⟨j|i (·) |j⟩i. The
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resulting error operators are

Ei,j ∝ |χ⟩i⟨j|i ⊗ 1\{i} ⊗ |“i”⟩X or Ei,j ∝ |ERASED⟩i⟨j|i ⊗ 1\{i} , (3.11)

where Ei,j acts on particle i, where j = 0, . . . , q − 1, where |χ⟩i is some fixed state on
particle i, and where 1\{i} is the identity operators on all particles except for the ith
particle. (We’ve assumed that χI in Eq. (3.10) is a pure state. If that’s not the case,
additional Kraus operators are needed to resolve χI as an ensemble of pure states.) The
two possibilities in (3.11) correspond to whether the information of which particles are
erased is modeled explicitly in a register X or whether the affected particles are placed in
the additional state |ERASED⟩. Similarly, the error operators associated with an ℓ-particle
erasure channel (ℓ > 1) can be chosen as

EI;y ∝ |χ⟩I⟨y|I ⊗ 1\I ⊗ |“I”⟩X or EI;y ∝ |ERASED⟩⊗|I|
I ⟨y|I ⊗ 1\I , (3.12)

where I ⊂ {1, . . . , n} with |I| ≤ ℓ, where y ∈ {0, . . . q − 1}×|I| and 1\I is the identity on
all particles not indexed by I,

Erasure errors have a simple representation from the environment’s perspective:

NEras. I(·) = trI(·) ⊗ |χ⟩⟨χ|I → N̂Eras. I(·) = tr\I(·) , (3.13)

where tr\I denotes the partial trace of all n particles except those labeled by I. The
complementary channel thus reveals the reduced state of the input state on the particles
affected by the erasure. The erasure of some particles amounts to handing those
particles over to the environment.

If multiple constellations of erasures appear with corresponding probabilities, as modeled
by an ℓ-particle erasure channel (3.10), we find

N̂Eras. ℓ(·) =
∑

I⊂{1,...,n}
|I|≤ℓ

pI tr\I(·) ⊗ |I⟩⟨I|X′ . (3.14)

In this case, the information about which particles are erased is provided explicitly both to
the output (via the memory register X) as well as to the environment (via another memory
register X ′).

We have a relation between the number of particle erasures a code can correct and its
distance d:

Theorem 6 (Distance and correction of erasures). A code can correct the family of all
ℓ-particle erasure channels if and only if

d ≥ ℓ+ 1 . (3.15)

Proof. Consider the error operators spanned by the error operators given in (3.12). Observe
that E†

I′,y′EI,y = 0 whenever I ̸= I ′, because ⟨“ I ′ ”|“ I ”⟩X = δI,I′ . (Alternatively, because
|ERASED⟩ is orthogonal to all other particle states, and so they must appear at the same
locations in EI,y and EI′,y′ .) If I = I ′, this means the error operators EI,y and EI′,y′

both act nontrivially on the same particles I = I ′, and so wgt
(
E†

I′,y′EI,y

)
= wgt

(
EI,y

)
=

wgt
(
EI′,y′

)
≤ ℓ. If ℓ < d, then by definition of the distance, we have ΠE†

I′,y′EI,yΠ ∝ Π;
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the Knill-Laflamme conditions are therefore satisfied and the code can correct the set of
all ℓ-particle erasures.

For the converse, we begin by noting that E†
I,yEI,y′ ∝ |y⟩⟨y′|I ⊗ 1\I . For fixed I and for

all y,y′ ∈ {0, . . . , q − 1}×|I|, these operators form a basis of all operators acting on the
particles I. The collection of all such operators for all I ⊂ {1, . . . , n} with |I| ≤ ℓ thus
spans all operators of weight at most ℓ. If the {EI,y} are correctable, the Knill-Laflamme
conditions state that

ΠE†
I,y′EI,yΠ ∝ Π ∀ |I| ≤ ℓ,∀ y,y′ . (3.16)

Any operator O of weight at most ℓ thus satisfies ΠOΠ ∝ Π, as it can be decomposed as a
linear combination of the E†

I,y′EI,y. By definition, the code must have a distance d > ℓ. ■

It is therefore possible to correct more errors if they are erasure errors as opposed to them
being more general errors (2t erasures as opposed to t general errors). This property is
reminiscent of the difference between correcting errors and detecting them, and indeed,
both error detection and correction of erasures are possible under the same condition on
the distance.

The key reason why a code can correct more erasure errors than general errors is that
we are given the knowledge of the location of the error. More generally: A code that can
correct t errors at unknown locations can correct 2t errors at known locations (a.k.a. located
errors). This statement can be seen immediately if we model explicitly the knowledge of
the location of an error. For an error Ek that acts nontrivially on particles I, the same
error accompanied by location information on a register X is

Eloc.
k = Ek ⊗ |“I”⟩X . (3.17)

In general, the operator E†
k′Ek need not vanish when Ek, Ek′ act on different sets of particles.

But tagging on the location information ensures the errors become orthogonal whenever
they act on different sets of particles: Eloc. †

k′ Eloc.
k = 0 if I ̸= I ′. Whereas in general,

wgt(E†
k′Ek) ≤ wgt(E†

k′) + wgt(Ek), for located errors we actually have wgt(Eloc. †
k′ Eloc.

k ) =
wgt(Ek′) = wgt(Ek) or Eloc. †

k′ Eloc.
k = 0. We can therefore consider errors acting on more

particles before the weight of the error pair reaches the distance of the code:

Π E†
k′Ek︸ ︷︷ ︸

wgt(·)≤2t<d

Π ∝ Π ∀ weight-t errors

=⇒ ΠEloc. †
k′ Eloc.

k︸ ︷︷ ︸
wgt(·)≤2t<d

Π ∝ Π ∀ weight-2t errors. (3.18)

3.4 Entanglement properties and bounds on code parameters

Code words of n-particle codes must be suitably entangled. We can verify this property by
computing the reduced state of a code word on a set of sites I ⊂ {1, . . . , n}, with |I| ≤ d−1
where d is the code distance.

ρI = tr\I(|ψ⟩⟨ψ|) : |ψ⟩ ∈ C . (3.19)

We’ve seen that ρI = N̂Eras. I(ψ) is what the environment receives if we erase the particles
I, so ρI better not depend on ψ.
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Recall that ⟨y |ρI |y′⟩ = tr
(
E†

I,y′EI,yψ
)
. Often, the many errors EI,y can all happen on

the system, resulting in a ρI that is typically well mixed. This, in turn, means that |ψ⟩
must be correspondingly entangled. For nondegenerate stabilizer codes that we’ll introduce
in the next chapter, it even turns out that ρI = 1I/2|I|. Code words of such codes are
maximally entangled between any subsystem I and its complement!

The no-cloning bound provides a constraint relating the number n of particles to the
distance d of the code. Suppose we had a four-qubit code of distance d = 3. Say we send
the first two qubits to Alice and the last two to Bob. The code corrects two erasures, so
both parties could recover the original logical state, violating the no-cloning theorem:

We find a general bound for any n-particle code (no-cloning bound):

n > 2(d− 1) . (3.20)

The quantum Singleton bound is a refinement of the no-cloning bound that involves
the number of encoded logical particles. Consider a pure, maximally entangled state
|ϕ⟩LR = q−k/2∑

i|i⟩L|i⟩R between the k logical particles HL ≃ Cqk and the reference
system R ≃ L. The k local particles are encoded into the n physical particles (HP ≃ Cqn).
Let’s split the n particles into three subsystems P (1), P (2), and P (3), where P (1) and P (2)

each consist of d− 1 particles and where P (3) collects the remaining n− 2(d− 1) particles.
We obtain the state |ψ⟩RP (1)P (2)P (3) that can be visualized as follows:

The local reduced state of |ψ⟩ on R coincides with that of |ϕ⟩ on R, since R is not affected
by the encoding, and so its von Neumann entropy is that of a maximally mixed state:

H(R) = log2
(
qk) = k log2(q) . (3.21)

(All von Neumann entropies in this argument apply to the state |ψ⟩RP (1)P (2)P (3) .) Since
P (1) contains d− 1 particles, its erasure is correctable. The reduced state on RP (1) must
therefore be tensor product between R and P (1), since the reduced state on P (1) cannot
depend on the logical input state:

ρRP (1) := trP (2)P (3)
(
ψ
)

= ρR ⊗ ρP (1) . (3.22)
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(More precisely: P (1) is the output of the complementary channel of the channel that
erases P (1), which is correctable; it must hence be a constant channel that always outputs
a fixed state regardless of its input.) Recall the von Neumann entropy is additive for tensor
product states:

H(RP (1)) = H(R) +H(P (1)) . (3.23)

Recall furthermore that the von Neumann entropy depends only on the spectrum of its
argument; because |ψ⟩ is pure, the Schmidt decomposition guarantees the reduced states
on RP (1) and on P (2)P (3) have the same spectrum:

H(RP (1)) = H(P (2)P (3)) . (3.24)

Combining these equalities, we find:

H(R) = H(RP (1)) −H(P (1)) = H(P (2)P (3)) −H(P (1))
≤ H(P (2)) +H(P (3)) −H(P (1)) , (3.25)

where the last inequality follows from the subadditivity of the von Neumann entropy.
Repeating the same argument while swapping the roles of P (1) and P (2), we find

H(R) ≤ H(P (1)) +H(P (3)) −H(P (2)) . (3.26)

Since both inequalities hold simultaneously, we may write

H(R) ≤ −|H(P (1)) −H(P (2))| +H(P (3)) ≤ H(P (3)) . (3.27)

Recalling the value of H(R) we computed earlier, we find

k log2(q) = H(R) ≤ H(P (3))
≤ log2 dim(HP (3)) =

(
n− 2(d− 1)

)
log2(q) . (3.28)

We therefore obtain the quantum singleton bound, applicable to any n-particle code:

n− k ≥ 2(d− 1) . (3.29)

The quantum Hamming bound applies to nondegenerate n-qubit codes (q = 2) that
can correct t-qubit errors. Consider a basis of error operators {Ek} spanning the set of
t-qubit errors Errt that is orthogonal with respect to the Hilbert-Schmidt inner product,
tr(E†

k′Ek) = 0 whenever k ̸= k′. From the Knill-Laflamme conditions, and since the code
is nondegenerate, the error spaces {EkC} are all nontrivial and orthogonal to each other.
There must be enough room in the physical Hilbert space HP to accommodate all these
error spaces:

How many Ek’s do we have? We can choose as a basis of errors all Pauli strings of weight
≤ t to find:
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Putting everything together, we obtain the quantum Hamming bound which is valid
for nondegenerate n-qubit codes that can correct t-qubit errors:

t∑
j=0

(
n

j

)
3j ≤ 2n−k . (3.30)

3.5 Further reading

I encourage readers to look up additional details in Gottesman’s book [1]. Readers will
find in particular some technical arguments that I omitted, such as an upper bound on the
distance between an i.i.d. noise channel and a noise channel whose Kraus operators have
weight at most t (see Theorem 1.1 in [1]).

A significant majority of n-particle quantum error-correcting codes that are commonly
used and studied are stabilizer codes, and we’ll cover the stabilizer formalism in the next
chapter. Stay tuned!

The landscape of n-particle codes (especially n-qubit codes) that are not stabilizer codes
is a bit scattered. Examples of n-particle codes that are not stabilizer codes include
permutation-invariant codes , spin codes , and more .
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Chapter 4

Qubit Stabilizer Codes

Now we’ll introduce powerful techniques to actually design useful, performant codes.
Because these techniques draw deep inspiration from classical error correction, we’ll start
by talking about classical linear codes.

4.1 Classical binary linear codes

A classical bintstring x ∈ {0, 1}×n can be viewed as an element of the binary vector space
Fn

2 , over the field of binary numbers F2 = {0, 1}, with the addition modulo 2.

A binary linear code is defined as a linear subspace C of Fn
2 . That is, the bitwise XOR

of two code words is another code word.

Specifically, binary linear code encodes k bits into n bits via a mapping that can be specified
by linearly independent binary vectors v1, . . . , vk ∈ Fn

2 . The k logical bits α = (α1, . . . , αk)
are encoded into the bitstring

v(α) =
k∑

i=1
αivi (addition modulo 2) . (4.1)

The {vi} form a basis of C.

The generator matrix G of the code C maps α to v(α) via

v(α) = GT α . (4.2)

It is a k × n matrix whose rows are the {vi}’s:
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Alternatively, we can specify the k-dimensional code subspace C of Fn
2 by giving n − k

linear constraints. The parity check matrix H collects these constraints into (n− k) × n
matrix satisfying

Hv = 0 ⇔ v ∈ C ⇔ ∃ α : v = GTα . (4.3)

The rows of H are linearly independent and span the space of all bitstrings that are
orthogonal to all the bitstrings in C. This implies:

HGT = 0 . (4.4)

Orthogonality is meant with respect to the inner product u · v ≡ uT v =
∑
uivi with

addition modulo 2. We have uT v = 0 if and only if both u and v take the value 1 at an
even number of locations. Contrary to our intuition in real or complex vector spaces, a
bitstring can be orthogonal to itself!

The parity check matrix gives us precious information about what errors the encoded
bitstring might have suffered. Suppose a code word v = GTα has some of its bits corrupted.
In such a case, v → v′ = v + e where e is a bitstring that takes the value 1 whenever v′

differs from the noiseless bitstring v. If we apply H, we find:

Hv′ = H(v + e) = Hv︸︷︷︸
=0

+He = He . (4.5)

The bitstring He which results from applying the parity check matrix H on an error e is
called the syndrome of the error e.

Recovery of the encoded bitstring is possible if we can infer e from its syndrome He. In
this case, it suffices to add e again to restore the noiseless bitstring:

v′ → v′ + e = v + e+ e = v . (4.6)

(Recall addition is modulo 2.)

Inferring e from He is not possible if any arbitrary bitstring e ∈ Fn
2 can occur as an error.

Instead, we fix a set of errors E that we wish to be able to correct, and we design a code to
ensure that all ei ∈ E have distinct syndromes.

If two errors e1, e2 ∈ E have the same syndrome, He1 = He2, then recovery is likely to fail.
Indeed, if e1 occurs (v → v′ = v + e1) but we attempt to correct the error by applying e2
(v′ → v′ + e2), we obtain

v′ + e2 = v + e1 + e2 ̸= v . (4.7)

That is, we failed to restore the original code word. Even worse, we have H(v+e1 +e2) = 0,
meaning that we’ve restored a bitstring in the code space but it’s the wrong one. We
caused a logical error!

The distance of a binary linear code C is the minimum Hamming distance between any
two code words. It is equal to the minimal Hamming weight of any nonzero code word.
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Remember that the Hamming weight |x| of a bitstring x is the number of 1’s that appear
in x. The Hamming distance between bitstrings x, y is the number of locations where
the bitstrings differ.

Exercise: Show the equivalence of the two definitions of the distance of a binary linear code
given above.

A n-bit binary linear code encoding k bits with a distance d is referred to as a [n, k, d]
code. Note the single brackets—as you see, we chose to use double brackets versus single
brackets to distinguish quantum codes from classical codes.

Theorem 7. A binary linear code of distance d can correct up to t = (d− 1)/2 corrupted
bits.

Proof. For any distinct e1, e2 with |e1|, |e2| ≤ t, we have |e1 + e2| ≤ 2t < d; by definition
of the distance, e1 + e2 cannot be a code word. Hence H(e1 + e2) ̸= 0, i.e. He1 ̸= He2,
and all errors of weight ≤ t give rise to distinct syndromes. ■

Taking the transpose of the fundamental equation (4.4) relating the generator matrix G
and the parity check matrix H, we find

GHT = 0 . (4.8)

If we swap the roles of G and H, we obtain a new code C⊥ with generator matrix G′ := H
and parity check matrix H ′ := G. The code C⊥ encodes n− k bits and has k parity check
constraints. The code C⊥ is called the dual code of C.

A useful identity relating a code C to its dual code C⊥ is the following.

Lemma 8. For any bitstring u,

∑
v∈C

(−1)u·v =
{

2k if u ∈ C⊥

0 if u /∈ C⊥ .
(4.9)

Proof. The first case is straightforward, as the 2k terms in the sum each take the value
+1. To prove the second case, we start from the identity∑

α∈{0,1}×k

(−1)α·w = 0 for any w ̸= 0 , (4.10)

where α,w ∈ {0, 1}×k.

Exercise: Prove the identity (4.10).

We parametrize v ∈ C as v = GTα with α ∈ {0, 1}×k. Then∑
v∈C

(−1)u·v =
∑

α∈{0,1}×k

(−1)uT GT α =
∑

α∈{0,1}×k

(−1)α·(Gu) = 0 if Gu ̸= 0 . (4.11)

Since G is the parity check matrix of C⊥, we are guaranteed to have Gu ≠ 0 whenever
u ̸= C⊥. ■

48



4.2. THE QUBIT STABILIZER FORMALISM

4.2 The qubit stabilizer formalism

Stabilizer codes can be thought of as a quantum analog of binary linear codes defined by their
parity check matrix. The idea is to specify the code space through a set of measurements
for which all valid code words have a definite outcome (analogously to the constraints
represented by the parity check matrix), and where incorrect measurement outcomes
provide valuable information about the errors that might have occurred (analogously to
how the syndrome informs which error occurred).

The n-qubit Pauli group Pn is the group composed of all tensor products of the single-qubit
Pauli operators

X =
(

0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
, (4.12)

along with 1 and a possible global phase multiple of i. It is generated by single-qubit X
and Z operators acting on each individual qubit:

Pn =
〈
i1, X1, . . . , Xn, Z1, . . . Zn

〉
. (4.13)

A generic element of the Pauli group, called Pauli operator or Pauli string, consists of a
global phase in {±1,±i} and a tensor product of 1, X, Y , and Z’s over each qubit. For
instance:

P = (−i)X ⊗ 1⊗ Z ⊗ 1⊗ 1⊗X ⊗ Y ∈ P7 . (4.14)

Alternative ways to write Pauli operators are often preferred for the concision, and we’ll
use them interchangably:

P = (−i)XIZIIXY ; P = (−i)X1Z3X6Y7 . (4.15)

In the first variant, tensor product symbols are omitted and single-qubit identity operators
are written as ‘I’. In the second variant, identity operators are omitted entirely and an
index indicates on which qubit each single-qubit operator acts. We’ll only use the first
notation when it is clear that no multiplication is involved; for instance, the notation is
useful when displaying a list of Pauli operators.

Recall some elementary properties of X, Y , and Z:

X2 = Y 2 = Z2 = 1 (Paulis square to 1)
XY = iZ ; Y Z = iX ; ZX = iY ; (multiplication rules)

XY = −Y X ; Y Z = −ZY ; ZX = −XZ . (Paulis anticommute)
(4.16)

Some important properties of a generic element of Pn are:

• Any P ∈ Pn is unitary: P−1 = P †;

• For any P ∈ Pn, either P = P † (if its global phase is ±1), or P = −P † (if its global
phase is ±i);

• Every P ̸∝ 1 has two distinct eigenvalues. These are ±1 if P = P † or ±i if P = −P †.
In either case, both eigenspaces have the same dimension 2n−1, half the full Hilbert
space;
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• For any P ∈ Pn, either P 2 = 1 (if P = P †) or P 2 = −1 (if P = −P †);

• For any P ∈ Pn:

tr(P ) =
{
ik2n if P = ik1 ;
0 otherwise.

(4.17)

• For any P,Q ∈ Pn, either PQ = QP or PQ = −QP . Equivalently, either [P,Q] = 0
or {P,Q} = 0, where [A,B] = AB −BA and {A,B} = AB +BA.

It turns out that the Pauli operators are useful to define quantum versions of “checks” as
measurements for which all code states have a single, fixed outcome. If we pick r Pauli
operators that commute, we can define the code space as a fixed common eigenspace of
those operators. The Pauli group structure, along with the properties above, will turn out
to provide a range of useful properties of the associated code space, such as its dimension, a
characterization of which errors the code can correct, and simple physical implementations
of basic logical operators.

Before we define a qubit stabilizer code, it is useful to understand more precisely under
which circumstances a common +1 eigenspace of a set of Pauli operators can identify a
nontrivial subspace.

For any arbitrary subspace C of the n-qubit Hilbert space C2n , the Pauli stabilizer group
(or simply stabilizer group or even stabilizer) of C is

S(C) =
{
P ∈ Pn : P |ψ⟩ = |ψ⟩ ∀ |ψ⟩ ∈ C

}
. (4.18)

(At this point, S(C) is a set of operators. We’ll see shortly that it is, in fact, a group.)

Some important properties of the Pauli stabilizer group are:

• The set S(C) never contains −1, i.e., −1 /∈ S(C).

Proof. Follows from the fact that −1|ψ⟩ = −|ψ⟩ ≠ |ψ⟩ for any |ψ⟩ ∈ C. ■

• For any P ∈ S(C), we have P = P †, i.e., P cannot have ±i global phases.

Proof. If P had global phase ±i, then its eigenvalues would be ±i and P would not
have a +1 eigenvalue. ■

• S(C) is a group.

Proof. If P,Q ∈ S(C), then QP |ψ⟩ = |ψ⟩ for all |ψ⟩ ∈ C, so PQ ∈ S(C). Also
P−1 = P † = P ∈ S(C). ■

• S(C) is Abelian.

Proof. Let P,Q ∈ S(C). Either PQ = QP or PQ = −QP . If the latter were true,
then |ψ⟩ = PQ|ψ⟩ = −QP |ψ⟩ = −|ψ⟩ which is a contradiction, so P and Q must
commute. ■
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Conversely, any Abelian subgroup S of Pn with −1 /∈ S defines a nontrivial subspace
C ≡ C(S) for which S(C) = S:

C(S) =
{
|ψ⟩ : P |ψ⟩ = |ψ⟩ ∀ P ∈ S

}
. (4.19)

Here, C(S) is the common +1 eigenspace of all elements in S, noting that all elements of S
commute.

An arbitrary subspace of the n-qubit Hilbert space generically cannot be fully identified by
such a stabilizer group S. (Such is the case, for instance, if the subspace dimension is not a
power of two.) So generically, C(S(C)) ̸= C. However, for any S we do have S(C(S)) = S.

Any Abelian subgroup S of Pn with −1 /∈ S is the stabilizer group of its associated
subspace C(S), so necessarily satisfies the properties listed above. In particular, we have
S = S† for all S ∈ S. Also, by a slight abuse of terminology, we often refer to elements of
S as stabilizers.

A stabilizer code is specified by an Abelian subgroup S ⊆ Pn with −1 /∈ S. That is, its
code space C is the subspace of all states |ψ⟩ that are stabilized by all elements of S:

C =
{
S|ψ⟩ = |ψ⟩ ∀ S ∈ S

}
. (4.20)

The group S can be specified by a choice of independent generators S = ⟨S1, . . . Sr⟩. These
are elements Si ∈ S such that any S ∈ S can be written as a product of the chosen Si’s
(the Si’s generate S), and furthermore, removing any individual Si causes the other Si’s
not to generate all of S (they are independent).

All elements of S commute, and S2
i = 1, so any S ∈ S can be written uniquely as

S = Si1
1 S

i2
2 · · ·Sir

r , ij ∈ {0, 1} . (4.21)

Therefore, the size of S is the number of bitstrings of length r:

|S| = 2r . (4.22)

Recall that the projector onto the ±1 eigenspace of a Pauli operator P can be written as
(1± P )/2 if P = P †. We can therefore write the projector onto C(S) as

ΠS =
r∏

j=1

1+ Sj

2 . (4.23)

Expanding the product, we find

ΠS =
(1+ S1

2
)

· · ·
(1+ Sr

2
)

= 1
2r

∑
i1,...,ir∈{0,1}

Si1
1 · · ·Sir

r = 1
2r

∑
S∈S

S . (4.24)

This formula is useful as it directly relates the stabilizer elements to the code space
projector.

We can compute the size of the code space C thanks to (4.24):

dim(C) = tr(ΠS) = 1
2r

∑
S∈S

tr(S) = 2n−r , (4.25)
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noting that all terms in the sum vanish except for the term S = 1.

Therefore, any n-qubit Pauli stabilizer group with r independent generators
encodes k = n− r logical qubits.

Intuitively, each independent generator Si halves the remaining Hilbert space: S1 selects
half the original Hilbert space, S2 divides the +1-eigenspace of S1 into those that belong
to the +1-eigenspace of S2 and those in the −1-eigenspace, and so on.

Lemma 9. Let S be a stabilizer group with independent generators S1, . . . Sr. For any j,
there exists Pj ∈ Pn such that {Pj , Sj} = 0 and [Pj , Si] = 0 for all i ̸= j. (Proof on page 60.)

(We’ll defer the proof of this lemma until we introduce a useful formalism for stabilizers
based on binary linear algebra.)

Example: With n = 5, consider the stabilizer group S = ⟨S1, . . . , S4⟩ with

S1 = X ⊗ Z ⊗ Z ⊗X ⊗ 1 ≡ XZZXI ≡ X1Z2Z3X4 ;
S2 = IXZZX ;
S3 = XIXZZ ;
S4 = ZXIXZ .

(4.26)

As you can see, S2, S3, and S4 are cyclically permuted versions of the stabilizer S1.
The last cyclic permutation, ZZXIX, is not independent of the other generators, since
ZZXIX = S1S2S3S4. There are r = 4 independent generators, so this code encodes k = 1
qubit. We can list all 24 = 16 elements of S:

No two possible products of the Si’s are the same, which indeed confirms that the Si are
independent.

For a general qubit stabilizer code, code words can be found by projecting your favorite
n-qubit states onto C by applying ΠS .

For the 5-qubit code example given above, we find a code word by starting for instance
with the state |00000⟩:

In general, computing the code words explicitly for a stabilizer code is possible, but is
tedious. Fortunately, finding explicit code words is often unnecessary since we can determine
which operators encode the logical information using the stabilizer formalism.
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For the 5-qubit code example given above, we can see the operator XXXXX commutes
with all elements of S (it commutes with all its generators) but is not in S. Had we
included XXXXX in our stabilizer group, the stabilized subspace would have dimension
1 (i.e., 0 qubits) instead of 2 (i.e., 1 qubit). Therefore XXXXX must have a nontrivial
action on the code space. I’ts a xlogical operator. We can take it to represent the “X”
operator of our encoded logical qubit.

The stabilizer formalism is also useful to represent certain specific quantum states. We
simply pick r = n independent stabilizer generators, which stabilize a one-dimensional
subspace spanned by a single quantum state. States that can be described in this way are
called stabilizer states.

Exercise: Find the states that are stabilized by the following stabilizer groups: (i) S =
⟨XX,ZZ⟩; (ii) S = ⟨Z1Z2, Z2Z3, . . . , Zn−1Zn, X1X2 · · ·Xn⟩.

This representation is useful to simulate certain quantum circuits on a classical computer.
If the circuits have the property of mapping stabilizer states to stabilizer states (such
circuits are called Clifford circuits), then we can simulate the state evolution generated by
the circuit by keeping track of the n stabilizers that identify the quantum state, rather
than tracking the state’s 2n complex coefficients.

4.3 Correcting errors in stabilizer codes

By design, measuring any S ∈ S on a code state |ψ⟩ ∈ C always yields +1 in the absence
of errors. If, when measuring S ∈ S, we find −1, an error must have occurred.

Remember that all elements of S commute, so they can be measured simultaneously. It
actually suffices to measure the generators {Si} of the stabilizer group S = ⟨S1, . . . Sr⟩,
rather than each individual element of the group. This is because the measurement outcome
of a product SS′ for S, S′ ∈ S is predetermined as the product of the measurement outcomes
of the individual operators S, S′.

A stabilizer code operates by measuring a choice of stabilizers over multiple rounds. Usually,
we choose to measure the independent stabilizer generators. The measurement outcomes
are called the syndromes (or syndrome vector). The syndromes represent all the
information we have about an error that might have occurred.

If we flip a generator Si → −Si, we obtain an equivalent stabilizer group that stabilizes a
copy of C that is orthogonal to the original C. Thus, the syndrome bitstrings associated
with S1, . . . Sr label mutually orthogonal copies of C. Taking 2r copies of a 2k-dimensional
space takes up 2k+r = 2n dimensions, filling up the n-qubit state space. That is, the copies
of C labeled by the syndrome vector associated with independent stabilizer generators form
a partition of the entire n-qubit Hilbert space into error spaces.

Suppose a Pauli error E ∈ Pn occurs:

|ψ⟩ → E|ψ⟩ . (4.27)

How is the measurement outcome of a stabilizer S ∈ S affected? We have

SE|ψ⟩ =
{
ES|ψ⟩ if ES = SE
−ES|ψ⟩ if ES = −SE

}
=
{
E|ψ⟩ if ES = SE
−E|ψ⟩ if ES = −SE .

(4.28)
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Therefore, E|ψ⟩ is always an eigenvector of S and the measurement outcome of S is
deterministic. The measurement outcome of S is +1 whenever E commutes with
S and it is −1 whenever E anticommutes with S. A stabilizer measurement S
can thus detect any error E that anticommutes with S.

Consider the set Errt of t-qubit errors. They are spanned by Pauli operators P ∈ Pn that
satisfy wgt(P ) ≤ t. Recall a n-qubit code can correct the set of t-qubit errors if and only if
its distance d satisfies d ≥ 2t+ 1. Therefore, if we can determine the distance d of a qubit
stabilizer code, we’ll know for which t the code can correct the set of t-qubit errors.

Lemma 10. Let S be a stabilizer group and let E ∈ Pn. Then ΠSEΠS ∝ ΠS if and only
if either E ∈ S up to a phase, or there exists S ∈ S such that ES = −SE.

In other words, a Pauli E does not corrupt logical information if it is a stabilizer or if it
anticommutes with a stabilizer.

Proof. We can assume without loss of generality that E = E†, or else we can replace
E → iE. If ±E ∈ S, then ΠEΠ = ±Π ∝ Π, where we write Π ≡ ΠS . If there exists S ∈ S
with SE = −ES, we find that

ΠEΠ = ΠEΠS = ΠESΠ = −ΠSEΠ = −ΠEΠ , (4.29)

which implies that ΠEΠ = 0 ∝ Π. On the other hand, if E /∈ S, −E /∈ S, and ES = SE
for all S ∈ S, then E is independent of S1, . . . , Sr while commuting with those operators.
The eigenspaces of E further halve C and E acts nontrivially on the code space. ■

Therefore, the distance of a stabilizer code is the smallest weight of a Pauli
operator P that commutes with all elements of S and is not itself a stabilizer
up to a phase.

It is convenient to introduce some additional mathematical concepts to give a more concise
version of the above statement.

The normalizer N(S) of S in Pn is

N(S) =
{
P ∈ Pn : PS = SP

}
. (4.30)

It turns out that for Pauli stabilizer groups, the normalizer coincides with the centralizer
Z(S) of S in Pn, defined as the set of all Pauli operators that commute with all elements
of S:

Z(S) =
{
P ∈ Pn : ∀S ∈ S , PS = SP

}
= N(S) . (4.31)

On the other hand, we can use the notation ⟨i,S⟩ ≡ ⟨i1, S1, . . . , Sr⟩ ≡
⋃3

ℓ=0 i
ℓS to designate

the group formed by all elements of the stabilizer group, multiplied by a possible phase in
{±1,±i}.

We always have ⟨i,S⟩ ⊆ N(S).
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Therefore, the set N(S) \ ⟨i,S⟩ consists precisely of all Paulis that commute with all
elements of S, without being themselves a stabilizer up to a phase. The distance of a Pauli
stabilizer code with Pauli stabilizer group S can thus be expressed as

d = min
{
wgt(P ) : P ∈ N(S) \ ⟨i,S⟩

}
. (4.32)

The Knill-Laflamme conditions guarantee that, provided d ≥ 2t+ 1, any E ∈ Pn that is a
t-qubit error is correctable. How can we find the correction operation and what does it
look like?

Not every t-qubit error E ∈ Pn leads to a distinct syndrome vector. For example, if E
happens to be a stabilizer, the syndrome vector remains all-+1, as if no error had happened.
But a stabilizer acts trivially on the code space, meaning that no correction operation
is required if E is a stabilizer, even up to a phase. But the syndromes associated with
independent stabilizer generators of a code with d ≥ 2t+ 1 can uniquely identify a t-qubit
error up to a stabilizer :

Lemma 11. If E,F ∈ Pn lead to the same syndrome vector with respect to a set of
independent stabilizer generators, then F †E ∈ N(S). If, additionally, wgt(E),wgt(F ) ≤ t
with t ≤ (d− 1)/2, then F †E ∈ ⟨i,S⟩.

Proof. If E,F lead to the same syndrome vectors, then they both commute and
anticommute exactly with the same generators: For each i = 1, . . . r, we have ESi = SiE ⇔
FSi = SiF . Then, for any Si, we have F †ESi = SiF

†E as either E,F † both commute
with Si or both anticommute with it. This means that F †E ∈ N(S). If, additionally,
wgt(E),wgt(F ) ≤ t, then wgt(F †E) ≤ 2t < d so by (4.32), F †E /∈ N(S) \ ⟨i,S⟩. Since
F †E ∈ N(S), we must have F †E ∈ ⟨i,S⟩. ■

We find the following procedure to correct the set of t-qubit errors. If we observe a given
syndrome vector, we first find a Pauli operator F with wgt(F ) ≤ t that leads to the
observed syndromes. We then apply F † as a correction operation. Whatever t-qubit error
E happened, we know that F †E is a stabilizer up to a phase, so F †E|ψ⟩ ∝ |ψ⟩. The code
state is restored, and the error E is corrected up to an unobservable global phase.

A procedure that maps the measured syndrome vector to a decision about which correction
to apply is called a decoder .

The decoder we proposed above has two issues:

(i) It might be hard to find the Pauli correction operation F ;

(ii) The decoder fails completely if we observe a syndrome vector that is not compatible
with any t-qubit error, but which would correspond to a higher-weight error. (Those
will happen in practice.)

Issue (i) is a general issue when designing good decoders. Decoding tends to be a hard
problem!

We can deal with issue (ii) by coming up with an algorithm that always outputs some
reasonable correction operation for any possible observed syndrome vector.

Suppose an error E ∈ Pn happens with probability pE . In fact, phases are irrelevant in
error operators because multiplying a noise channel’s Kraus operators by arbitrary phases
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leaves the channel invariant. Therefore, we’ll take pE to represent the probability of an
error E happening up to an irrelevant global phase, so pE = piℓE and

∑
E∈Pn/phase pE = 1.

A decoder might try to find the Pauli E with the highest probability pE of occurring
and that is compatible with the observed syndrome vector. In standard error models,
the error E with the highest probability pE typically coincides with the error E with
the smallest weight wgt(E). Guessing that the error that occurred is E, we apply the
correction operation F † = E†. This decoding strategy is called minimum weight decoding:

The strategy of minimum weight decoding consists in finding the error operator E ∈ Pn

of minimal weight wgt(E) and such that E gives rise to the observed syndrome vector.
Then apply the correction operation F † = E†.

Because stabilizers act trivially on the code space, it is not necessary to identify specifically
which error E occurred. Instead, it suffices to identify the error E up to a stabilizer. A
good decoding strategy is to determine which entire class of errors up to stabilizer had the
highest likelihood of occurring.

The strategy of maximum likelihood decoding consists in finding a Pauli operator
E ∈ Pn/phase that maximizes the probability of the entire error class ES = {ES : S ∈ S}:

E = argmaxE′∈Pn/phase
∑
S∈S

pE′S , (4.33)

And applying the correction operation F † = E†.

Maximum likelihood decoding is an optimal decoding strategy in that it maximizes the
probability of successfully restoring the noiseless code word if we also include errors
whose weight exceeds the code distance. Denote by s = syndrome(E) the (deterministic)
syndromes that an error E ∈ Pn gives rise to and let F (s) be the output of the decoder
given the input syndromes s. Denoting by χ{. . .} the characteristic function equal to one
(zero) whenever its argument is true (false), the overall probability that the recovery is
successful is

psuccess =
∑

E∈Pn/phase
pE χ

{
F (s)†E |ψ⟩ ∝ |ψ⟩

}
=

∑
E∈Pn/phase

pE χ
{
F (s)†E ∈ S (up to phase)

}
=

∑
E∈Pn/phase

pE χ
{
E ∈ F (s)S (up to phase)

}
=
∑

s

∑
E∈F (s)S

syndrome(E)=s

pE =
∑

s

(∑
S∈S

pF (s)S

)
. (4.34)

In the first three lines, we write s ≡ syndrome(E). In the last equality, we implicitly assume
that the decoder always picks F (s) to give rise to the same syndrome as the observed s;
otherwise, remaining uncorrected syndromes would mean that the code word would not be
restored in the code space and the success probability for that particular s would be zero.
The maximum value of the expression (4.34) is obtained if we maximize each term in the
first sum independently; this is exactly what maximum likelihood decoding does.

Designing good decoders for different types of codes and error models is a rich area of
active research. We’ll dig deeper into this topic later, as we begin discussing fault tolerance.
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4.4 Logical operators in stabilizer codes

Logical operators can be identified with elements of the quotient group N(S)/S, i.e., all
elements of the normalizer up to a stabilizer. (Remember, stabilizers act trivially on the
code space.)

In fact, we have N(S)/S ≃ Pk, which can be taken to be the logical Pauli group, i.e., the
Pauli group associated with the encoded logical qubits.

Example: In the 5-qubit code discussed above, the operator XXXXX commutes with
S1, . . . S4 and thus with all the elements of S. But XXXXX is not itself a stabilizer:
XXXXX ∈ N(S) \ ⟨i,S⟩. It is a logical operator which we can take as the logical X
operator of the encoded qubit:

X = XXXXX . (4.35)

Similarly, the operator ZZZZZ also commutes with all stabilizers without itself being a
stabilizer up to a phase: ZZZZZ ∈ N(S) \ ⟨i,S⟩. Furthermore, ZZZZZ anticommutes
with XXXXX. We can take it to be the logical Z operator of the encoded qubit,

Z = ZZZZZ . (4.36)

These choices are not unique! Multiplying X or Z by a stabilizer yields another represen-
tative of the same logical operator, with identical action on the code space. Let S ∈ S and
say we picked X

′ = XS = SX. Then for any |ψ⟩ ∈ C,

X
′|ψ⟩ = XS|ψ⟩ = X|ψ⟩ . (4.37)

In the above 5-qubit code, XS3 = (XXXXX)(XIXZZ) = −IXIY Y is another logical
X representative. This one happens to have a lower weight, and depending on available
hardware operations, might be more practical to implement.

In the 5-qubit code, we can check that any Pauli operator of weight ≤ 2 anticommutes
with at least one stabilizer generator S1, . . . S4. For instance, if E = Y IIZI, we find that
E anticommutes with S3. (Because S is unchanged if we cyclically shift the qubits, it
suffices to check the preceding property for weight-1 and weight-2 operators of the form
∗IIII, ∗∗III, and ∗I∗II where each ‘∗’ is to be replaced by X,Y, Z.) On the other hand,
we found a weight-3 logical operator XS3. Hence, the distance of this code is d = 3.

The stabilizer code with independent generators (4.26) is the well-known [[5, 1, 3]] code.

The fact that a logical operator can have many equivalent representatives can be seen
as a manifestation of the fact that the logical quantum information is encoded in the
entanglement degrees of freedom of the n qubits and that the recovery of logical information
is possible even after the loss of certain qubits. Specifically, if d− 1 qubits are erased, we
know that all logical operators must be recoverable from the remaining n− d+ 1 qubits;
in consequence, there must be a logical representative of any logical operator acting only
on those qubits. This property is referred to as the cleaning lemma.

Lemma 12 (Cleaning lemma). Let M be a set qubits whose erasure is correctable and let
O be a logical Pauli operator. Then there exists S ∈ S such that OS acts trivially on M .
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Proof. Write the erasure of M as a quantum channel NEras. M (·) = trM (·), with P =
n qubits and P ′ = M c. Let E(·) = VL→P (·)V † be the isometric encoding channel, where
L consists of the k logical qubits. Since the erasure of M is correctable, there exists by
definition a quantum channel DP ′→L such that D NEras. M E = idL.

Let OL = V †OV be the action of O on the code space. We find an operator O′ supported
on the complement M c of M that reveals the value of O by simply choosing the operator
O

′ := D†(OL) ⊗ 1M . Indeed, for any ϕL,

tr
(
E(ϕL)O′) = tr

(
E(ϕL) (D†(OL) ⊗ 1M )

)
= tr

(
(D NEras. M E)(ϕL)OL

)
= tr(ϕLOL) . (4.38)

It remains to see that this operator can be chosen to be a Pauli operator. For stabilizer
codes, the encoding isometry V maps Pauli operators to Pauli operators by construction.
Furthermore, we’ve seen that we can choose the decoding channel DP ′→L as the channel
that (1) appends maximally mixed qubits to P ′ to reach n qubits again, (2) measures
an independent set of stabilizer generators S1, . . . , Sr, (3) applies a corresponding Pauli
correction F{sj} ∈ Pn depending on the syndromes {sj}, and (4) conjugates by V † to keep
only the code space as the output of the channel. Overall, such a map DP ′→L is of the
form D(3)

P →L D(2)
P →P D(1)

P ′→P with D(1)(·) = (·) ⊗ (1M/2|M |),

D(2)
P →P =

∑
{sj}∈{±1}×r

F{sj}
(∏

j
1+sjSj

2
) (

·
) (∏

j
1+sjSj

2
)
F †

{sj} , (4.39)

and D(3)(·) = V †(·)V . One can check that D(2)
P →P maps a Pauli operator to an operator

that is proportional to a Pauli operator. If OL is a Pauli operator, then O′ = D†(OL) ⊗1M

is proportional to a Pauli operator. The proportionality coefficient must be 1 as we can
check from the action of the operator on a code word that is an eigenstate of O. Since O
and O′ are both Pauli logical operators with the same action on the code space, they must
be stabilizer-equivalent. ■

Exercise: Convince yourself that the decoding channel D(2)
P →P in the proof of the cleaning

lemma above is a Pauli channel: It is diagonal as a superoperator in an operator basis of
Pauli operators, i.e., it maps any Pauli operator to a scaled version of that Pauli operator.

It is also instructive to prove the cleaning lemma directly using the stabilizer formalism;
see further reading.

4.5 Binary symplectic representation

The binary symplectic representation of Pauli operators is a powerful tool to describe
Paulis up to a phase, capturing their commutation relations, while bringing in the power
of binary linear algebra.

To a Pauli P = α
⊗n

i=1 Pi ∈ Pn with Pi ∈ {1, X, Y, Z} and α ∈ {±1,±i}, we associate a
length-2n bitstring vP = (xP |zP ) with n-bitstrings xP , zP that take the following values:
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For i = 1, . . . n,

(xi, zi) =


(0, 0) if Pi = 1

(0, 1) if Pi = Z

(1, 0) if Pi = X

(1, 1) if Pi = Y .

(4.40)

For example, the Pauli string XIY ZZ is represented as(
1 0 1 0 0|0 0 1 1 1

)
. (4.41)

Up to an unspecified global phase, the Pauli operator corresponding to a binary vector
(x|z) can be written as

P =
( n⊗

i=1
Xxi

)( n⊗
i=1

Zzi

)
≡ XxZz , (4.42)

where we use the notation Xx ≡
⊗n

i=1X
xi for a bitstring x ∈ Fn

2 to denote the tensor
product of 1’s and X’s in which the X’s appear exactly at the locations where xi = 1, and
similarly for Zz.

The symplectic product (or symplectic form) ⊙ is defined as

(x1|z1) ⊙ (x2|z2) = x1 · z2 + z1 · x2 , (4.43)

where · is the inner product in Fn
2 defined earlier and where addition is modulo 2.

With v1 = (x1|z1) and v2 = (x2|z2), we can also write

v1 ⊙ v2 = (x1|z1) ⊙ (x2|z2) = vT
1 Λv2 , (4.44)

where v1, v2 are considered as column vectors for matrix multiplication, and where Λ is a
2n× 2n binary matrix given by

Λ =
(

0 1

1 0

)
. (4.45)

Observe that a vector is always orthogonal to itself according to the binary symplectic
inner product:

(x|z) ⊙ (x|z) = x · z + x · z = 0 . (4.46)

The symplectic product reveals the commutation relation of the corresponding Pauli
operators: For all P,Q ∈ Pn,

(xP |zP ) ⊙ (xQ|zQ) =
{

0 if PQ = QP

1 if PQ = −QP .
(4.47)

We can prove this property as a consequence of how to multiply Paulis in terms of their
symplectic representation. For P = αPX

xPZzP and Q = αQX
xQZzQ with αP , αQ ∈
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{±1,±i}, we find

PQ = αPαQX
xPZzPXxQZzQ = αPαQ (−1)zP ·xQ XxP +xQZzP +zQ , (4.48)

where we pick up a (−1) sign whenever we have to commute a X from the expression for
Q through a Z at the same qubit location in the expression for P . We see that

vP Q = (xP Q|zP Q) = (xP + xQ|zP + zQ) = vP + vQ , (4.49)

because the symplectic notation ignores global phases. The phase in the product PQ is
still given explicitly in (4.48), enabling us to compare the phase acquired in the product
PQ compared to the product QP . We find:

QP = αQαP (−1)zQ·xP XxP +xQZzP +zQ = (−1)xP ·zQ+zP ·xQ PQ

= (−1)(xP |zP )⊙(xQ|zQ) PQ , (4.50)

arriving at the claimed property (4.47).

A set of Paulis P1, . . . Pℓ are independent, i.e., neither one can be written as a product
of the other operators, if they are represented in the binary symplectic formalism by
linearly independent vectors vP1 , . . . vPℓ

. (This property is a consequence of (4.49), i.e. of
the fact that a product of Pauli operators is represented by a sum of the individual Paulis’
representing vectors.)

A stabilizer group S = ⟨S1, . . . , Sr⟩ is represneted by a linear subspace V spanned by the
linearly independent vectors v1, . . . vr, where vi ≡ vSi is the binary symplectic representation
of the generator Si. Because the generators all commute, SiSj = SjSi for all i, j, we have
that vi ⊙ vj = 0 for all i, j. In other words, the fact that all stabilizer generators commute
is represented by the fact that the vectors are all orthogonal to each other (along with
being orthogonal to themselves, vi ⊙ vi = 0).

The space V ⊥ of all vectors that are orthogonal to all the vi’s corresponds to the normalizer
of S. The space V ⊥ always includes V as a subspace, which corresponds to the statement
that S ⊆ N(S).

The space V is spanned by r = n − k independent generators; equivalently, it can be
specified by n+k constraints. The constraint vectors span V ⊥. Therefore, the normalizer’s
size can be computed as

|N(S)| = 4 × 2n+k , (4.51)

where the factor 4 stems from the choice of global phase in {±1,±i}.

Let us now return to the proof we deferred earlier, of Lemma 9. This proof illustrates the
advantage of the binary symplectic formalism of being able to draw on rich tools from
binary linear algebra.

Proof of Lemma 9. Given a stabilizer group S with independent generators S1, . . . Sr, we
want to show that for any j there exists Pj ∈ Pn such that PjSj = −SjPj and PjSi = SiPj

for all i ̸= j. The vectors v1, . . . vr are linearly independent and span V . Given any j, we
seek wj ∈ F2n

2 such that vj ⊙wj = 1 and vi ⊙wj = 0 for all i ̸= j. These are r independent
constraints for 2n variables, so there are 2n− r = n+ k solutions (with r = n− k). Any
one gives a wj corresponding to a Pauli Pj with the desired commutation relations. ■

60



4.6. CALDERBANK-SHOR-STEANE (CSS) CODES

As a consequence, we can show that there always exists some error E ∈ Pn that gives rise
to any fixed syndrome vector associated to an independent set of generators. In other
words, all syndrome vectors are theoretically possible outcomes in such a case. (There is
no guarantee that the error E be a correctable error. It might be the case that the error E
has high weight.)

We can build a binary matrix representation of a stabilizer code by collecting the vectors
v1, . . . vr as rows of a binary matrix:

This matrix can be thought of as a “parity check matrix” for a quantum stabilizer code:
To any error E ∈ Pn with symplectic representation vE corresponds the syndrome vector

s =
[
HX

∣∣∣∣ HZ

]
Λ

 |
vE

|

 , (4.52)

recalling that Λ = [ 0 1
1 0 ] and uT Λv ≡ u⊙ v.

Example: The stabilizer group of the [[5, 1, 3]] code can be represented as:

and with logical operators given by:

Additional remark: Gaussian elimination can be very useful to check linear independence
of a set of binary vectors. For instance, you can use it to check that you’ve found a logical
operator by ensuring it commutes with all stabilizer generators and that it is independent
of those generators. (See also [1, Procedure 6.6].)

4.6 Calderbank-Shor-Steane (CSS) codes

Qubit Calderbank-Shor-Steane (CSS) codes are an important class of qubit stabilizer codes.
They are defined by imposing an additional structure on their stabilizer group: We must
be able to generate the group with a list of stabilizer generators that are either of “X type”
(containing only X’s and 1’s) or of “Z type” (containing only Z’s and 1’s).

A CSS code is a qubit stabilizer code for which there is a choice of stabilizer generators
SZ1 , . . . , SZrZ

, SX1 , . . . , SXrX
such that each SZi is a tensor product of only 1’s and Z’s,

while each SXi is a tensor product of only 1’s and X’s. The SZ1 , . . . SZrZ
are called Z-type

stabilizer generators while the SX1 , . . . , SXrX
are called X-type stabilizer generators.
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A CSS code can be represented as a binary matrix of the form:
|

0 | HZ

|
HX | 0

|

 (4.53)

The submatrices HZ and HX must necessarily satisfy the following relation to ensure that
all stabilizer generators commute:

HXH
T
Z = 0 . (4.54)

One of the important features of CSS codes is that they are obtained from a specific
construction, termed the CSS construction, starting from two binary linear classical codes.
This construction was among the first quantum error-correcting codes to be proposed,
historically, in the mid-1990’s.

The CSS construction: Let CZ and CX be two classical n-bit binary linear codes such
that C⊥

X ⊆ CZ . The corresponding CSS code is the qubit stabilizer code with symplectic
representation (4.53), in which HZ and HX are the parity check matrix associated with
the binary linear codes CZ and CX .

The condition C⊥
X ⊆ CZ ensures that the X-type and the Z-type stabilizers all commute.

Indeed, the condition C⊥
X ⊆ CZ is equivalent to any x ∈ C⊥

X passing the checks for CZ ;
such x’s span the image of the generator matrix HX of C⊥

X , meaning that HZH
T
X = 0. We

find:

C⊥
X ⊆ CZ ⇔ HZH

T
X = 0 ⇔ HXH

T
Z = 0 ⇔ C⊥

Z ⊆ CX , (4.55)

It might have appeared that the condition C⊥
X ⊆ CZ introduced an asymmetry between

the X-type code and the Z-type code; we see that this is not the case, since the conditions
C⊥

X ⊆ CZ and C⊥
Z ⊆ CX are equivalent.

Suppose HZ has size rZ × n and HX is rX × n, i.e., there are rZ independent Z-type
stabilizers and rX independent X-type stabilizers. Equivalently, the code CZ encodes
kZ = n − rZ bits and CX encodes kX = n − rX bits. Then there are rX + rZ total
independent stabilizers and the quantum CSS code therefore encodes k qubits with

k = n− rX − rZ = kX + kZ − n . (4.56)

CSS codes can be thought of as a combination of one classical code to correct bit flips,
and one classical code to correct phase flips. Any error E ∈ Pn can be decomposed in
terms of X’s and Z’s, E ∝ XxEZzE , up to a phase. The Z’s will be picked up by the
X-type stabilizers while the X’s will be detected by the Z-type stabilizers. This property
makes the decoding of CSS codes often easier, because we can focus on each type of error
separately. A decoder typically first corrects one type of error (say, X type) using the
syndromes that involve the other type of operator (Z-type), and then corrects the other
type of error.

Suppose CZ and CX have distance dZ and dX . Consider an error E ∝ XxEZzE . If
1 ≤ |ZE | ≤ dX , then one of the X-type stabilizers will anticommute with E and E ≠ N(S).
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Similarly, if 1 ≤ |xE | ≤ dZ , then E is detected by a Z-type stabilizer and E ̸= N(S).
Therefore, any E ∈ N(S) \ ⟨i,S⟩ must have weight at least wgt(E) ≥ min(dX , dZ).
Therefore the CSS code’s distance satisfies

d ≥ min(dX , dZ) . (4.57)

This bound is generally not tight, as it fails to account for errors that turn out to be
stabilizers. In other words, it is fine if an error E is not detected by any of the classical
codes, as long as E is in fact a stabilizer.

Theorem 13. The distance d of an arbitrary CSS code is determined by the smallest
weight of bitstrings in CX , CZ which do not correspond to stabilizers:

d = min(d∗
X , d

∗
Z) ; (4.58)

d∗
X = min

{
|x| : x ∈ CX \ C⊥

Z

}
; (4.59)

d∗
Z = min

{
|x| : x ∈ CZ \ C⊥

X

}
. (4.60)

Proof. The condition that x ∈ CZ \ C⊥
Z is equivalent to x ∈ CX and Zx /∈ ⟨i,S⟩. Indeed,

Zx is a Z-type stabilizer if and only if x is in the linear span of the rows of HZ , which
is C⊥

Z . Similarly, x ∈ CZ \ C⊥
X is equivalent to x ∈ CZ and Xx /∈ ⟨i,S⟩. Consider any

E ∝ XxEZzE with E ∈ N(S) \ ⟨i,S⟩. Then xE ∈ CX and zE ∈ CZ , otherwise one of the
stabilizers would anticommute with E and E /∈ N(S). Also, either xE /∈ C⊥

Z or zE /∈ C⊥
X , as

otherwise E ∈ ⟨i,S⟩. Thus either xE ∈ CX \C⊥
Z or zE ∈ CZ \C⊥

X . So either d ≥ |xE | ≥ d∗
X

or d ≥ |zE | ≥ d∗
Z , which implies d ≥ min(d∗

X , d
∗
Z).

On the other hand, let x ∈ CX \C⊥
Z with |x| = d∗

X . Let E = Zx. We have E /∈ ⟨i,S⟩ since
x /∈ C⊥

Z . Also, E ∈ N(S) because x ∈ CX . Therefore d ≤ wgt(E) = d∗
X . Similarly, d ≤ d∗

Z .
Therefore d ≤ min(d∗

X , d
∗
Z), completing the proof. ■

Exercise: Prove the following explicit expression for the code words of a CSS code in the
computational basis:

|u+ C⊥
X⟩ ∝

∑
v∈C⊥

X

|u+ v⟩ (u ∈ CZ) , (4.61)

where u+ C⊥
X enumerates possible cosets of C⊥

X in CZ . How do the code words of a CSS
code look like in the Hadamard basis?

An important classical binary linear code is the [7, 4, 3] Hamming code with parity check
matrix

HHamming =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (4.62)

Exercise: Check that the [7, 4, 3] Hamming code has distance 3.
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We can see that the rows of HHamming themselves pass the parity check matrix, as well as
the bitstring ( 1 1 1 0 0 0 0 ). The generator of the code can thus be taken as

GHamming =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0

 . (4.63)

The [7, 4, 3] Hamming code therefore contains its own dual as a subcode. That is, we can
pick CX and CZ both to be the Hamming code and we’ll have that C⊥

X ⊆ CZ , as required
by the CSS construction. The corresponding CSS code has stabilizer generators

ZIZIZIZ XIXIXIX

IZZIIZZ IXXIIXX

IIIZZZZ IIIXXXX .

(4.64)

It encodes k = n − r = 7 − 6 = 1 qubit. The distance of the CSS code is d = 3, which
follows from d ≥ min(dX , dZ) = 3 along with XXXIIII ∈ N(S) \ ⟨i,S⟩. We can identify
the logical operators

X = XXXXXXX (4.65)
Z = ZZZZZZZ . (4.66)

This code is known as the [[7, 1, 3]] Steane code. The Steane code has some interesting
properties related to the implementation of logical gates and which we’ll return to when
we get to the topic of fault tolerance.

Exercise: For any CSS code, show that we can always choose logical Pauli operators such
that logical X’s contain only X’s and 1’s while logical Z’s contain only Z’s and 1’s.

4.7 Some essential stabilizer codes

Here are some important stabilizer codes.

• The [[5, 1, 3]] code (introduced above) ;

• The [[7, 1, 3]] Steane code (introduced above) ;

• The [[9, 1, 3]] Shor code seen in Chapter “Chapter 1” is in fact a CSS code, with
stabilizer generators

Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, (4.67)
X1X2X3X4X5X6, X4X5X6X7X8X9 , (4.68)

and with logical operators

X = Z1Z4Z7 ; Z = X1X2X3 . (4.69)

The stabilizer generators in binary matrix representation is:
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The 9, 1, 3 Shor code is an example of a degenerate code for which the naive distance
bound d ≥ min(dX , dZ) is not tight. Here, CX has the parity check matrix HX and
we see that x = ( 1 1 0 0 0 0 0 0 0 ) is a code word of CX . Thus dX = 2. But we’ve
seen that the distance of the [[9, 1, 3]] Shor code is d = 3. Indeed, the CX code word
x corresponds to the operator Z1Z2, which is in fact a stabilizer.

• The [[4, 2, 2]] code has stabilizer generators

XXXX ; ZZZZ . (4.70)

It encodes 4 − 2 = 2 qubits, for which we can choose the following logical operators:

X(1) = X1X3 ; X(2) = X1X2 ;
Z(1) = Z1Z2 ; Z(2) = Z1Z3 .

(4.71)

The code states are spanned by

|00⟩ = 1√
2
(
|0000⟩ + |1111⟩

)
; (4.72)

|01⟩ = 1√
2
(
|0011⟩ + |1100⟩

)
; (4.73)

|10⟩ = 1√
2
(
|0101⟩ + |1010⟩

)
; (4.74)

|11⟩ = 1√
2
(
|0110⟩ + |1001⟩

)
. (4.75)

• The [[4, 2, 2]] code can be generalized to a [[2m, 2m− 2, 2]] code for any m ≥ 1, where
the stabilizer generators are taken as

ZZZ . . . Z ; XXX . . .X . (4.76)

A basis of code words can be chosen of the form

|ψ⟩x = 1√
2
(
|x⟩ +X⊗n|x⟩

)
, (4.77)

for even-weight bitstrings x.

• We’ll discuss many more stabilizer codes in the upcoming chapters. We’ll begin right
away in the next chapter, where we’ll cover Kitaev’s surface code.
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4.8 Further reading

There are many qubit stabilizer codes . Some important families of qubit stabilizer
codes include topological codes such as the surface code (the subject of the next couple
of chapters), and various constructions of quantum low-density parity check (qLDPC)
codes .

I’ll also point to an instructive proof of the cleaning lemma that directly uses the stabilizer
formalism in the paper which introduced this lemma [30].

There are many additional topics related to qubit stabilizer codes that I wanted to include
in these notes in additional chapters but didn’t yet have the chance (stay tuned!). These
include subsystem codes (see e.g. the Bacon-Shor code ), quantum weight enumerators
(see here1), and holographic codes .

The topic of decoding qubit stabilizer codes is equally rich. Decoding topological codes
can exploit a rich structure, see upcoming chapters. For general qubit stabilizer codes,
decoding techniques (such as methods based on belief propagation [31]) are listed in the
Zoo.2 Several papers present hardness proofs related to decoding qubit codes [32–34].

The qubit stabilizer formalism can be extended to qudits in multiple ways. The Pauli-X
and Z operators can be promoted to qudit operators that obey Weyl commutation relations,
giving rise to a family of codes that can be called modular-qudit stabilizer codes . On the
other hand, if the qudit states label elements of a Galois field, we can construct Galois-qudit
stabilizer codes .

The qubit Pauli stabilizer formalism can also extend to yield so-called XP stabilizer and
XS stabilizer codes.

1https://errorcorrectionzoo.org/c/qubits_into_qubits#defterm-Quantum_20Xweight_20Xenumerator
2https://errorcorrectionzoo.org/c/qubit_stabilizer#features_decoders
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Chapter 5

The Surface Code

The surface code is one of the best-studied and most well-known quantum error-correcting
codes. It will serve to introduce many important concepts, especially related to computation
and fault tolerance, and we’ll make some useful connections to condensed matter physics.

A key feature of the surface code is that its stabilizer generators act locally on qubits
arranged in a lattice. This geometric property make it the prime example of a topological
code.

5.1 Construction of Kitaev’s toric code

Consider a L× L square lattice with periodic boundary conditions. Let’s place a single
qubit on each edge of the lattice:

To each vertex v of the lattice, we associate an operator acting on the qubits adjacent to
the vertex. These are the star operators:

67



5.1. CONSTRUCTION OF KITAEV’S TORIC CODE

To each face p of the lattice, we associate an operator acting on the qubits along the sides
of the face. These are the plaquette operators:

We’ll represent star and plaquette operators simply by highlighting the edges and faces
where they act:

Remember, there are no boundaries to the lattice because we placed it on the torus. The
star and plaquette operators might look like this:

Any two star and plaquette operators commute! This property follows from the fact that
any two Bp and Av operators, if they overlap, always do so on an even number of qubits:

There are 2L2 qubits: L2 qubits on the horizontally oriented edges and L2 on the vertically
oriented edges. The total number of qubits is

n = 2L2 . (5.1)
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We count L2 plaquette operators and L2 star operators, by counting the number of faces
and vertices.

The plaquette operators are not all independent. If we take the product of all plaquettes,
each qubit has two Z’s acting on it, which cancel out:∏

all p

Bp = 1 . (5.2)

So, one plaquette can be written as the product of all the other plaquettes:

A product of two neighboring plaquettes apply Z’s twice on inner qubits which cancel
out. So, if we take a product of any subset of plaquettes, we get a collection of loops of Z
operators. There are exactly two ways of writing the same configuration of Z loops as a
product of plaquettes:

This shows that, if we remove one of the L2 plaquette operators, the remaining are
independent: No other product of plaquettes can create the same loops of Z operators.
Therefore, there are L2 − 1 independent plaquette operators.

Similarly, the product of all star operators applies X twice on each qubit, so∏
all v

Av = 1 . (5.3)

So the star operators are not all independent.

To visualize products of a subset of star operators, it is convenient to consider the dual
lattice. We associate a vertex to each face of the original lattice and a face to each vertex.
Edges have their orientation flipped, so they connect neighboring vertices of the dual
lattice:
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Qubits remain on the edges; the edges are indeed shared between the original lattice and
the dual lattice.

Star operators Av on the original lattice are associated with plaquettes of the dual lattice,
and plaquette operators Bp are associated with vertices on the dual lattice:

To avoid confusion, I’ll keep referring to Av as star operators and Bp as plaquette operators,
and I’ll stick to drawing them as they act on the original lattice.

Therefore, products of star operators Av create a constellation of X operators that forms
loops along the dual lattice edges, as we saw for plaquette operators on the original lattice.
Applying a similar argument as for the plaquettes Bp, we find that there are L2 − 1
independent Av star operators.

Kitaev’s toric code is the stabilizer code with stabilizer group generated by all the Av’s
and Bp’s:

Storic = ⟨{Av}, {Bp}⟩ . (5.4)

All stabilizer generators are either X-type (Av) or Z-type (Bp), so Kitaev’s toric code is a
CSS code.

There are r = 2(L2 − 1) independent stabilizer generators and we have n = 2L2 qubits.
Kitaev’s toric code therefore encodes k = n− r = 2 logical qubits.

Before we can identify logical operators, it is useful to understand the effect of single-qubit
errors on the syndromes.

5.2 Errors and logical operators in the toric code

A single X error anticommutes with two neighboring plaquette operators, causing them to
flip the sign of their outcomes when measured. (We can think of them as warning lights
that light up to indicate the wrong outcome was observed at that location.)

Analogously, a single Z error anticommutes with two neighboring star operators, causing
them to “light up:”
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If we happen to have two or more neighboring Z errors, then only the stars at the endpoints
of the error string light up:

If we have a string of neighboring Z errors, the effect of multiplying the string by adjascent
plaquette operators is to distort the shape of the string, without changing its endpoints:

To understand the effect of strings of X errors, we consider the dual lattice. A string of
X errors that connect neighboring edges of the dual lattice anticommutes with the two
plaquette operators at the endpoints of the string, and commutes with all other plaquettes.
When we measure the syndromes, these two plaquette operators “light up:”

If we multiply a string of X’s by star operators, we distort the string on the dual lattice,
but we cannot change its endpoints:
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To avoid confusion between the original lattice and the dual lattice, we’ll often represent
strings of X operators by highlighting the corresponding edges in the original lattice, giving
a rugged path of facing edges:

Suppose we extend a string of Z errors up until it wraps around the torus. (Remember,
we have periodic boundary conditions.) Then the two endpoint star operators annihilate
each other:

This Z string commutes with all the stabilizers. But it cannot be in the stabilizer group:
Multiplying this Z string by any stabilizer can distort the Z string, but it cannot change
the fact that the string wraps around the torus. The string is thus not stabilizer-equivalent
to 1. It is a nontrivial logical operator. We can take it to be the Z1 logical operator, i.e.,
the Z operator of the first of our two logical qubits.

Any Z string that wraps once around the torus horizontally is stabilizer-equivalent to Z1:

A string of Z’s that wraps around vertically is another, independent logical operator:

72



5.2. ERRORS AND LOGICAL OPERATORS IN THE TORIC CODE

Multiplying the string by stabilizers might move the string around, but it won’t change
the fact that the string wraps around vertically. This is another logical operator, which we
can take to be Z2, the Z operator of the second logical qubit.

Now, consider an X-type string that wraps around vertically:

It is also a logical operator. Observe that it anticommutes with a horizontal string of Z’s
on the original lattice. These strings overlap on one site (highlighted in yellow), where the
respective X and Z operators anticommute. We can take the vertical X-type string to be
X1, the X operator of the first logical qubit.

Similarly, a horizontal X-type string is a logical operator, and can be chosen to represent
X2.

In summary, the Pauli logical operators of the toric code are:

We don’t have to worry about Z1 overlapping with X2, because they act on different sets
of qubits: Z1 acts on qubits placed on horizontal edges and X2 acts on vertical-edge qubits.
(These operators can be distorted to stabilizer-equivalent strings that overlap on some
edges, for instance by distorting a vertical Z string to have overlap on some horizontal
edges; yet such strings necessarily overlap on an even number of sites, ensuring that any two
representatives of the logical operators Z1 and X2 always commute.) A similar argument
holds for Z2 and X1.

The distance of the toric code is d = L: A nontrivial logical operator needs to wrap around
the torus, ensuring its weight must be at least L.

A convenient picture emerges if we think of flipped stabilizer generator outcomes (the
“warning lights” that turned on) as a sort of “particles” in a curious phase of matter with
some exotic properties. To construct this picture, we begin with the following Hamiltonian:

H = −
∑

v

Av −
∑

p

Bp . (5.5)

An error-free code state of the toric code is a simultaneous +1-eigenstate of all Av and Bp

operators; it therefore minimizes the energy of each individual Hamiltonian term and is
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therefore a ground state of H. The ground space of H is degenerate, since the toric code
has multiple distinct code states.

Code states that are affected by a Pauli error E (i.e., states of the form E|ψ⟩ with |ψ⟩ ∈ C,
E ∈ Pn) are also simultaneous eigenstates of all the Av’s and Bp’s; they have eigenvalue
−1 for all stabilizer generators that anticommute with E and they have eigenvalue +1
for all remaining stabilizer generators. Such states are also eigenstates of H. Their
energy, compared to the ground space, is precisely determined by the number of stabilizer
generators whose signs are flipped! (Each time we flip a stabilizer generator’s sign, we
increase the energy by 2.) These states are all the possible eigenstates of H, as we can
see by remembering that the error spaces associated with all possible Pauli errors in a
stabilizer code fill up the entire Hilbert space. Because each stabilizer generator sign flip
increases the energy by a fixed amount, we can think of them as elementary excitations of
H:

We identify stabilizer generators with a flipped sign as excitations of quasiparticles of
H.

There are two kinds of quasiparticles, associated with flipping either a Bp term (giving rise
to a plaquette-type excitation) or a Av term (representing a star-type excitation):

Quasiparticles of each kind always come in pairs! This reflects the dependence of the
plaquette and the star operators (recall

∏
v Av = 1 =

∏
pBp), which implies that there can

only ever be an even number of Av’s and an even number of Bp’s whose signs are flipped.

We can think of creating, moving, and annihilating these quasiparticle excitaitons:

• A single-qubit X or Z error creates a pair of quasiparticle excitaitons;

• We can move one quasiparticle around by applying a single-qubit X or Z at one of
the edges adjacent to the excitation;

• Two quasiparticles of the same kind annihilate if they are moved to the same location;

• One quasiparticle type, when moved along a loop that encloses a single quasiparticle
of the other type, picks up a −1 phase:

These particles thus exhibit exotic particle statistics; particles with such exotic
statistics are often referred to as anyons. In the toric code, both kinds of excitations
behave individually like bosons, since an exchange of two particles of the same
kind does not give rise to any nontrivial phase. But star-type and plaquette-type
excitations behave mutually like fermions: Wrapping one around the other gives rise
to a −1 phase.
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5.3 Decoding syndromes and correcting errors in the toric code

Let us suppose that X and Z errors can happen at random, independently on each qubit.
Through exposure to the noise, the qubits suffer a random pattern of error operators (left
below). Of course, we don’t know which errors happened. We’ll only see some syndromes
corresponding to a configuration of stabilizer generators that “light up” (right below):

Recall that a −1 in the syndromes tell us that the corresponding stabilizer generator
anticommutes with the total Pauli error the system suffered. We still need to find out what
error happened, up to stabilizers, in order to restore the error-free state. Remember, this
process is referred to as decoding the syndromes.

As in any CSS code, we can correct separately X-type errors (which are caught by Z-type
stabilizers) and Z-type errors (caught by X-type stabilizers).

Remember that star-type and plaquette-type syndrome excitations always come in pairs!
I.e. there is always an even number of star excitations, and an even number of plaquette
excitations.

Flash exercise: Wait up, how come the above statement doesn’t contradict the general
property of stabilizer codes we saw in Chapter 4 that for any syndrome vector, we can
always find some Pauli operator that causes this syndrome?

Decoding the toric code amounts to pairing up excitations of the same type and applying
strings of X’s or Z’s to restore the state back to the code space, where all syndrome
outcomes are +1.

Here are two possible ways of pairing up plaquette excitations to correct X errors in our
example above:

In each case, applying X’s along the strings to remove the excitations leads to the following
operators being applied in total. The correction operation is multiplied with the original
error to obtain the overall operation that is applied to the original state:
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The yellow X’s above are the operations that are applied as a correction operation; the
yellow lines represent the strings of X’s resulting from the original error multiplied with
the correction operation.

In the case (a), two X errors are directly eliminated, and the four remaining X operators
form a stabilizer which acts trivially on the logical qubits. All X-type errors were successfully
corrected by choosing this pairing.

In the case (b), the X operators we introduced as a correction operation eliminate one
X-type error (turning the Y ∝ XZ error into a pure Z error) but also cause a string of X’s
to wrap around the torus! By choosing this pairing, the errors and the ensuing decoding
cause a logical error, because X2 is accidentally applied on the logical qubits!

The decoder’s task is to pair up excitations while minimizing the risk of causing a logical
error.

Recall that optimal decoding requires identifying the most likely class of stabilizer-equivalent
errors compatible with the syndromes (maximum likelihood decoding). This is a hard
computation in general!

However, it turns out that a simpler decoder that simply selects the most likely error usually
performs pretty well. For simple noise models, this corresponds to pairing up excitations
of the same type by applying the least possible number of operators (minimum weight
decoding). In our example, a decoder should prefer the pairing (a), which corresponds to
applying four X operators, to the pairing (b), which requires six X operators.

We’ll carry out a more detailed analysis of the relative performance of these two strategies
later on.

An efficient decoder for the toric code comes from an algorithm in graph theory known
as minimum-weight perfect matching. Suppose we are given a graph with weighted
edges:

A matching of the graph is a subgraph where every vertex is connected to at most one
edge. The matching is perfect if each vertex is connected to an edge. An algorithm by
Edmonds (1965) finds efficiently the perfect matching with the minimal sum of weights on
the remaining edges.

We can use minimum-weight perfect matching to pair up quasiparticle excitations of the
toric code efficiently. First, we build a graph where we associate one vertex to each observed
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quasiparticle excitaiton, and we connect all vertices to one another with weighted edges
whose weights are the distance between the excitation locations on the lattice (taxi-cab
distance). The minimum-weight perfect matching algorithm then provides the error of
minimal weight that is compatible with the observed syndromes.

Once the excitations are paired up, we can apply a corresponding string of X’s or Z’s to
remove the excitation pairs.

5.4 Planar surface codes: introducing boundaries

Laying out qubits on a physical torus is highly impractical. Can we get away with a flat,
two-dimensional surface?

Consider the following chunk of the square lattice:

Observe that we picked the boundaries in a particular fashion: “open” or rough boundaries
on the left and the right sides, and “closed” or smooth boundaries on the top and bottom
sides.

As for the toric code, there are two types of qubits: Those on horizontally oriented edges,
forming a L× L grid, and those on vertically-oriented edges, forming a (L− 1) × (L− 1)
grid. In total, we have n qubits with

n = L2 + (L− 1)2 = 2L2 − 2L+ 1 . (5.6)

In the bulk of the lattice patch, we define the star operators and plaquette operators as for
the toric code. At the boundaries, we simply omit one X operator for star operators on
smooth boundaries and we omit a Z operator for plaquettes on a rough boundary:
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As before, all star and plaquette operators, including those on the boundaries, commute.
Again, if a star and a plaquette operator overlap, they do so necessarily on an even number
of qubits:

In contrast to the toric code on the torus, all star operators and plaquette operators are
now independent! There are no redundant checks. There are L(L− 1) plaquette operators
and L(L− 1) star operators. In total, we have r independent stabilizer generators with

r = 2L1 − 2L . (5.7)

The number of encoded logical qubits is therefore

k = n− r = 1 . (5.8)

A horizontal string of Z’s is a logical operator, which we define as the logical Z operator
Z of the encoded logical qubit. In contrast, a vertical string of Z’s is no longer a logical
operator, since it anticommutes with the boundary star operators:

A vertical string of X operators following a path on the dual lattice from top to bottom is
a logical operator. It anticommutes with Z, so we define it to be the logical X operator X
of the encoded logical qubit. A horizontal string of X’s is no longer a logical operator:
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(Note that in the dual lattice, rough and smooth boundaries are interchanged.)

In the bulk (away from the boundaries), star and plaquette excitations behave as in the
toric code: A single Z or X error produces a pair of excitations, the latter can be moved
apart by applying further Z or X operators, and a pair of excitations annihilate whenever
they are brought at the same location.

If a string of Z’s ends on a rough boundary, only a single star-type excitation appears.
Similarly for strings of X’s ending on a smooth boundary. Excitations no longer necessarily
appear in pairs!

Therefore, there are two additional operations we can perform with our quasiparticle
excitations:

• We can “pull” excitations out of a boundary of the corresponding type, by applying a
single Pauli on that boundary. Applying a Z operator on a rough boundary produces
a single star-type excitation; applying an X operator on a smooth boundary produces
a single plaquette-type excitation;

• We can annihilate a single star-type (plaquette-type) excitation by moving it through
a rough boundary (smooth boundary).
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A decoder for a surface code patch with boundaries may choose to pair up excitations
together, or to pair up an individual excitation with the corresponding boundary type:

A possible pairing of the excitations, yielding a possible correction operation, is drawn
above in yellow.

Minimum-weight perfect matching yields an efficient algorithm to pair up excitations for
decoding, as for the toric code.

5.5 A surface code with punctures

The ability of the toric code to host two qubits rather than a single qubit is related to its
topology: We can find strings forming logical operators that wrap around in the right way
to get the desired anticommutation relations.

A way of generating a nontrivial topology on a flat surface is to poke holes in the surface.
Can we encode more logical qubits on the planar surface code in this way?

Consider the following patch with smooth boundaries all around, and in which we carved
out a hole:

This surface also encodes a single qubit, where the logical Z operator is a string of Z’s
that wrap around the hole, and the logical X operator is a string of X’s connecting the
inner boundary with the outer boundary.

We can combine different boundary types, and poke multiple holes, to encode multiple
qubits:
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Two pairs of boundary types, as well as each hole, each contribute one logical qubit.

Remember: Strings can be deformed (and their endpoints moved along a boundary) by
multiplying with stabilizers. For instance, X3X4 in the example above can be represented
equivalently as a simple string of X’s connecting the holes associated with qubits 3 and 4.

The distance of the code is the length of the shortest logical operator. It might be, for
instance, the separation between two holes.

Puncturing holes through a big patch of a surface code is an appealing technique for
encoding multiple logical qubits and performing gates on them. However, it turns out that
simply encoding multiple qubits in different, independent single-qubit surface code patches
is more efficient, thanks to clever techniques for performing gates between independent
single surface code patches that we’ll cover later as we discuss fault tolerance.

5.6 Rotated surface code

We can represented the surface code in a way that exhibits more symmetry between the
X-type and Z-type stabilizers as follows. We rotate the surface code by 45◦ and place the
qubits on the vertices of a new square grid:

For the moment, let us suppose we have periodic boundary conditions in the rotated square
lattice, with the effect of placing the lattice on the torus. The code is still for now the
same code as the toric code, we’re simply viewing it from a different angle. Observe that
the size of the new lattice grid is forced to be even because of the checkerboard pattern.

As in the surface code, Z-type (respectively, X-type) excitations are produced in pairs,
and can be moved around, by applying X (respectively, Z) operators:

Extending an X string or a Z string to wrap around the torus, in either direction, gives a
logical operator:
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The lattice size being even ensures commutation of Z1 with X2 and of Z2 with X1.

Now we consider the rotated surface code with boundaries, giving up the periodic boundary
conditions. (This is the setting which is commonly referred to simply as the “rotated
surface code.”) To define a rotated surface code patch, we need suitable boundary stabilizer
terms that can create or annihilate individual excitations. We define the following boundary
stabilizers:

The boundary terms enable the creation and annihilation of single excitations of either
type at the corners of the grid, while enabling them to propagate along each boundary:

5.7 Further reading

The surface code has been reviewed on numerous occasions in a variety of lectures, we
point to a selection of references here that is far from comprehensive. Additional references
are also listed in the Kitaev Surface Code entry of the Error Correction Zoo .

A few key, seminal papers that discuss fundamental properties of the surface code, and
which served as inspiration for this chapter, include a seminal paper by Kitaev, who
discovered the toric code [35], a brief and highly insightful explanation of the toric and
planar surface codes by Bravyi and Kitaev [36], and a study of the reliability of the surface
code by Dennis et al. [37].

For some more useful and insightful material we further point to an extensive review paper
by Fujii [5], a book chapter by Bombín [38], lecture notes by Dan Browne [13], presentations
by Kubica and Haah and Boulder Summer Schools, as well as an interactive blog post by
Pesah [39].
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5.7. FURTHER READING

The surface code was demonstrated experimentally in superconducting qubits [40] and forms
the basis of proposals for fault-tolerant quantum computation on such platforms [41, 42].

The surface code draws a close link between quantum error correction and condensed
matter physics. We’ve only hinted towards this connection in this chapter and we refer to
a swath of great references for the interested reader: a book by Zeng et al. [43], lectures by
Levin and Nayak at a Boulder Summer School, Fujii’s review paper [5], and many more.

Keep an eye for additional references in the upcoming chapters as explore further topics
surrounding topological codes and as we begin studying the reliability of the surface code.
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Chapter 6

More topological codes: homology and colors

In this chapter, we’ll extend the ideas at the root of the surface code in two main directions.
First, we’ll explain a general construction of CSS codes based on the mathematical concept
of homology. Second, we’ll construct another important class of topological codes, named
color codes.

6.1 Topological codes from homology

We’ll see that the surface code generalizes naturally to arbitrary surfaces, by invoking the
mathematical toolbox of homology.

The connection between error correction and homology that we’ll develop here extends
naturally beyond topological codes to general CSS codes, in particular to quantum LDPC
codes that we’ll study later in this course.

Homology concerns the topology of objects, i.e., properties of objects that are invariant
under the application of a suitably continuous, invertible function.

We’ll now introduce some elements of homology in the simplest form we need to construct
qubit quantum error-correcting codes. Specifically, we’ll restrict our attention to so-called
Z2 cellular homology.

A cellulation of a surface (or hypersurface) is a decomposition of the surface into vertices,
edges connecting vertices, polygons enclosing edges, and so on, up to the dimension of the
object.
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Vertices are 0-dimensional objects, and we call them 0-cells. Edges, faces, etc. are 1-cells,
2-cells, etc.

Observe that in any cellulation of a surface, 1-cells are surrounded by 0-cells (the vertices
at the endpoints of an edge), 2-cells are surrounded by 1-cells (the edges around each
polygon), etc. Indeed, a central concept in homology is to study how n-dimensional objects
can or cannot be associated with the boundary of an (n+ 1)-dimensional object.

For example, a cellulation of the torus might look like this:

We define a n-chain as a mapping of each n-cell of a cellulation to Z2 = {0, 1}. Equivalently,
an n-chain is any subset of n-cells.

A 0-chain is a subset of vertices, a 1-chain is any subset of edges, etc. Despite their name,
n-chains do not have to resemble a usual chain in any way.

The n-chains form a group, for each n, in which we simply add the Z2 values in the n-chain
modulo 2. For example:

Furthermore, each n-chain is its own inverse.

The n-boundary map ∂n is a linear map from n-chains to (n− 1)-chains defined as follows.
To an n-chain that is a single-element subset of n-cells, ∂n associates the (n − 1)-chain
corresponding to the subset of (n− 1)-cells that immediately surround that n-cell in the
cellulation. The map ∂n extends to all n-cells by linearity under addition modulo two.
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The map ∂n coincides with our intuition of a “boundary” of strings of edges or collections
of faces:

We define the set of (−1)-cells to be the empty set ∅, such that there is (by convention)
only a single possible (−1)-chain, the null chain 0. We take ∂0 to map any 0-chain to the
null chain 0. Similarly, the set of (D + 1)-cells is taken to be ∅, where D is the dimension
of the cellulated (hyper)surface, and ∂D(0) embeds the only possible (D + 1)-chain 0 into
the space of D-chains as the null D-chain 0. We obtain a sequence of spaces connected by
the boundary maps, which we refer to as a chain complex:

An n-chain c whose boundary is trivial, i.e., ∂nc = 0 ≡ the null (n− 1)-chain ∅, is called an
n-cycle. The sum of two n-cycles is an n-cycle, so n-cycles form a group which we denote
by

Zn = ker ∂n . (6.1)

An n-chain c that happens to be the boundary of some (n+1)-chain c′, i.e., ∃ c′ : ∂n+1c
′ = c,

is called an n-boundary chain, or n-boundary. These also form a group which we
denote by

Bn = Im ∂n+1 . (6.2)

A fundamental feature of homology is the following: Every n-boundary is a n-cycle.
Equivalently, applying the boundary operator twice always gives a trivial map:

∂n−1∂n = 0 . (6.3)

“The boundary of a boundary is trivial.”

On the other hand, not all n-cycles need be n-boundaries. Intuitively, such n-cycles avoid
enclosing an (n+1)-dimensional surface. A n-cycle representing a subset of 1-cells wrapping
around the torus, for example, is not an n-boundary:
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The information about which n-cycles are not n-boundaries reveals interesting information
about the topology of a surface. For instance, on the flat two-dimensional plane, all n-cycles
are, in fact, n-boundaries. But this is not the case on the torus.

The n-th homology group is defined as

Hn = Zn/Bn = ker ∂n/ Im ∂n+1 . (6.4)

It is the group of equivalence classes of n-cycles, up to addition by n-boundaries. (Two
n-cycles are deemed ‘equivalent’ if one can be obtained by adding an n-boundary to the
other.)

We started from the cellulation of a surface, for which it turns out that we always have the
fundamental property of homology, ∂n−1∂n = 0. Actually, we could consider more general
chain complexes that do not have to originate from the cellulation of a surface. We lose our
original geometric interpretation; the Ci’s become abstract spaces and the boundary maps
are linear maps connecting them. In these more general cases, the boundary operator ∂n

defines how n-cells are related to (n− 1)-cells, and it must obey the fundamental property
∂n−1∂n = 0.

We can draw inspiration from the surface code to start inferring a general way of constructing
qubit error-correcting codes starting from the cellulation of an arbitrary surface:

1. (1) Fix a cellulation of a 2D surface with 0-cells, 1-cells, 2-cells, and n-boundary
maps ∂n;

2. (2) Place a qubit on each 1-cell;

3. (3) Define a plaquette operator Bp for each 2-cell p as Pauli-Z operators acting on
the qubits of its boundary 1-cells:

Bp =
∏

i∈∂p

Zi . (6.5)

Any product of plaquette operators simply corresponds to a 2-chain, and represents a
product of Z operators on the qubits on the 1-cells that make up the boundary of the
2-chain:

In these diagrams, the heavy dots (“•”) placed at the vertices of the lattice represent
0-cells and not qubits. Qubits are placed on the 1-cells, i.e., the edges of the lattice. I
won’t draw them explicitly to avoid overloading the diagrams.

Any string of Z’s that corresponds to a 1-boundary is therefore a product of plaquettes, so
is a Z-type stabilizer and acts trivially on the code space.

We’d like to associate a star operator to each 0-cell (vertex), but it’s not immediately
obvious how to define what we mean by the “edges that are connected to that vertex.”
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It turns out that X stabilizer generators are naturally described by a “dual” picture of
homology known as cohomology.

To each n-cell is associated a n-cocell. The cocells represent the vertices, edges, and faces
of the dual lattice:

A n-cochain is a linear functional on n-chains. It can be specified as an assignment p̃ of
n-cocells to Z2 where the functional is determined via the binary inner product modulo 2:

functional on n-chains ≡ ⟨p̃ , (·)⟩ . (6.6)

A 0-cochain p̃ can be specified by a subset of 0-cocells or as an assignment of 0-cocells
to Z2; its action on a 0-chain c is computed as the parity of the number of locations of
0-cell–0-cocell pairs on which both p̃ and c take the value 1:

A 1-cochain p̃ can be specified by a subset of 1-cocells or as an assignment of 1-cocells
to Z2; its action on a 1-chain c is computed as the parity of the number of locations of
1-cell–1-cocell pairs on which both p̃ and c take the value 1:

The n-coboundary map ∂̃n assigns to an n-cochain p̃ the (n+ 1)-cochain ∂̃np̃ which acts
on any (n+ 1)-chain c in the same way as p̃ would act on the boundary ∂n+1c of c:

⟨∂̃np̃ , c⟩ = ⟨p̃ , ∂n+1c⟩ . (6.7)
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Identifying n-chains and n-cochains with linear vector spaces over F2 we find that ∂̃n = ∂T
n+1,

where T denotes the transpose in the standard basis.

The coboundary map identifies the intuitive notion of a boundary on the dual lattice. The
coboundary of a 0-cochain is its enclosing 1-cochain:

The coboundary of a 1-cochain is its enclosing 2-cochain:

We can visually convince ourselves of this property by comparing ⟨∂̃np̃ , c⟩ with ⟨p̃ , ∂n+1c⟩
for the examples above and an example (n+ 1)-chain c:

We can again define the group of n-cocycles Z̃n and the group of n-coboundaries B̃n as:

Z̃n = ker ∂̃n ; (6.8)
B̃n = Im ∂̃n−1 . (6.9)
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The n-th cohomology group is

H̃n = Z̃n/B̃n = ker ∂̃n/ Im ∂̃n−1 . (6.10)

I’ll keep the tilde ‘˜ ’ in the notation for clarity. Some references simply use a superscript
(Hn) instead of a subscript (Hn) to distinguish the cohomology groups from the homology
groups.

We can thus complete our general homology-based code construction. Recall that qubits
are placed on 1-cells, which directly correspond to 1-cocells.

1. (4) Define a star operator Aṽ for each 0-cocell ṽ as Pauli-X operators acting on the
qubits of its coboundary 1-cocells:

Aṽ =
∏

i∈∂̃ṽ

Xi . (6.11)

Any product of star operators simply corresponds to a 0-cochain and represents a product
of X operators on the qubits on the 1-cocells that make up the coboundary of the 0-cochain:

It is instructive to check that the Av’s and the Bp’s commute, and to understand why this
property is guaranteed. A product of plaquettes is represented by a 2-chain w. A product
of star operators is represented by a 0-cochain c̃. The plaquettes act with Z’s on the qubits
lying on ∂2w. The star operators act with X’s on the qubits lying on ∂̃0c̃. The number
of qubits on which we have both an X and a Z applied will determine if the operators
commute (if it is an even number) or anticommute (if the number is odd). This parity can
be computed as the inner product

So any product of Aṽ’s commutes with any product of Bp’s as an immediate consequence
of the fundamental property of homology that ∂n∂n+1 = 0.
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Again, any 1-coboundary cochain corresponds to a product of star-type stabilizers and acts
trivially on the code space.

To find nontrivial logical operators, consider any Pauli operator P ∝ X x̃Zz that we represent
with a pair (x̃|z) of a 1-cochain x̃ and a 1-chain z in binary symplectic notation. For P to
commute with all Bp, we demand that ⟨x̃, ∂p⟩ = 0 for all p. With ⟨x̃, ∂p⟩ = ⟨∂̃x̃, p⟩ = 0
for all p, we find x̃ ∈ ker ∂̃, so x̃ must be a 1-cocycle. Similarly, for P to commute with all
Aṽ’s, we need 0 = ⟨∂̃ṽ, z⟩ = ⟨ṽ, ∂z⟩ for all ṽ, so z must be a 1-cycle.

If z is a 1-boundary, then Zz is a product of Bp-type stabilizers and acts trivially on the
code space. But if it is a 1-cycle that is not a 1-boundary, then it is a nontrivial logical
operator since it is not stabilizer-equivalent to 1.

Logical Z operators are determined by the homology group Hn.

If x̃ is a 1-coboundary, then X x̃ is a product of Aṽ’s and acts trivially on the code space.
Similarly to the Z’s, 1-cocycles that are not 1-coboundaries are nontrivial logical operators.

Logical X operators are determined by the cohomology group H̃n.

One can check it is always possible to find a set of generators of Hn and H̃n that obey the
correct commutation/anticommutation relations to be logical qubit X and Z operators.

A summary of the homological construction of a CSS code is presented in Fig. 6.1.

Figure 6.1: Summary of the construction of a CSS code from a homological chain complex.

91



6.2. SOME HOMOLOGY-CONSTRUCTED CSS CODES

The CSS code defined in this way corresponds to the choices of classical codes with parity
check matrices

HZ = ∂T
2 ; HX = (∂̃0)T = ∂1 . (6.12)

Indeed, the Z-type stabilizer generators correspond to B1 = Im ∂2 which are spanned by
the columns of ∂2, i.e. the rows of ∂T

2 which we may thus take as HZ . Similarly, the X-type
stabilizers B̃1 = Im ∂̃0 are spanned by the rows of (∂̃0)T = ∂1, which we may take as HX .

The property HXH
T
Z = 0 required by the CSS construction is automatically satisfied since

HXH
T
Z = ∂1∂2 = 0 , (6.13)

by the fundamental property of boundary maps in homology.

The distance of a homologically-constructed CSS code depends on the particular cellulation
used (e.g., the lattice size used to cellulate the torus), and does not only depend on the
topology of the surface.

6.2 Some homology-constructed CSS codes

While we started off with the cellulation of a surface, all we need to apply the above
construction of a CSS code based on homology is a chain complex

C2
∂2−→ C1

∂1−→ C0 , (6.14)

with the crucial property that ∂1∂2 = 0. A cellulation of a surface automatically enforces
this property, but the chain complex need not have such a geometric origin.

Example: A cellulated surface with boundaries. Consider a piece of a planar 2D lattice,
with boundaries. The n-cells are:

In the dual picture, the n-cocells are:

(Technically, such settings require us to speak of “relative homology,” because we are
considering subsets of n-cells and n-cocells from a larger cellulation without boundaries,
and inheriting the relevant homological concepts.)

With these n-cells and n-cocells, and following through the homological CSS code con-
struction, we obtain the stabilizers of the planar surface code with rough and smooth
boundaries. The boundary stabilizers emerge through the boundary operators:
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We have:

• B1 = strings that close up or terminate on a smooth boundary;

• B̃1 = costrings that close up or terminate on a rough boundary;

• Z1 = strings that wrap across horizontally;

• Z̃1 = costrings that wrap across vertically.

We find that

H1 ≃ Z2 ; H̃1 ≃ Z2 , (6.15)

from which we immediately see that we encode 1 logical qubit.

Example: 3D toric code. Let’s start from a cellulation of the 3D torus:

where opposing faces of the cube are identified to form the 3D torus.

We get a chain complex with one additional layer:

Let’s ignore C3 and use the part of the chain complex C2
∂2−→ C1

∂1−→ C0 to build a CSS code
according to the recipe derived above.

The Z-type stabilizers are associated with 2-D faces which come in three types:
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The X-type stabilizers correspond to 0-D vertices and act on the incident edges:

Star-type excitations are point-like, as for the 2-D toric code:

The plaquette-type excitations take the form of loops of plaquettes that surround membranes
of errors:

We can represent these excitations pictorially as:

Logical Z operators are topologically nontrivial strings of Z’s, while logical X operators
are topologically nontrivial membranes. There are three logical qubits:
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6.3 The color code

Another well-studied class of topological codes are color codes. They are closely related to
surface codes but differ in their construction.

Consider a lattice consisting of vertices, edges, and faces such that:

(1) Each vertex touches exactly 3 edges (the lattice is 3-valent); and

(2) Three labels, conventionally the colors red, green, and blue, can be attached to
the faces such that no two neighboring faces have the same label (the lattice is
3-colorable).

We place a qubit on each vertex of the lattice.

For example, consider the hexagonal honeycomb lattice on the torus, i.e. with periodic
boundary conditions:

To each face we associate an X-type stabilizer, acting with X’s on each vertex connected to
that face, as well as a Z-type stabilizer, acting with Z’s on the same vertices. The X-type
and Z-type stabilizer generators have the same supports, in contrast to the surface code.

The colors now designate the faces’ coloring, rather than the type (X or Z) of the
corresponding stabilizers. A darker-colored face is used to highlight a specific stabilizer
generator.

The stabilizers are not all independent on the torus. Taking the product of all X-type (or
Z-type) stabilizers associated with a given color applies a single X (or Z) to every qubit
of the lattice. If R, G, and B designate the set of red, green, and blue faces, we find that∏

f∈R

Xf =
∏
f∈G

Xf =
∏

f∈B

Xf ; (6.16)

∏
f∈R

Zf =
∏
f∈G

Zf =
∏

f∈B

Zf . (6.17)
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Exercise: Show that all Xf ’s and Zf ’s commute, using the fact that the lattice is 3-valent
and 3-colorable.

The color code is invariant if we swap the roles of X and Z. As a CSS code, HX = HZ . We
can thus focus on one type of errors (say X’s) and we know that the exact same analysis
applies to errors of the other type (Z).

Let’s assign a color to each edge, fixed to be distinct from the colors of the adjoining faces:

A string of X’s hopping between faces of color c along c-colored edges give rise to a pair of
c-color face excitations of Zf stabilizers:

On the other hand, a single X error produces a triplet of excitations, each a Zf stabilizer
on the adjoining faces, and one of each color:

Closed loops of X errors along edges of any color commute with all stabilizers:
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Logical operators are represented as strings of X’s and Z’s along colored edges that wrap
around the torus:

These strings cannot be contracted to a point. They are not stabilizer-equivalent to the
identity, and they act nontrivially on the code space.

Strings that wrap around horizontally can be deformed by multiplying by plaquettes. Note
there are only two independent string colors: A red string (for example) is equivalent to a
product of a green string with a blue string:

Faces that are marked by a thick dot (“•”) indicates multiplication by that face stabilizer
operator.

Similarly for strings that wrap around vertically:
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The 2D color code on the torus therefore encodes k = 4 logical qubits, with the following
logical operators:

The Xi are chosen as strings of X operators on the strings designated above and the Zi

are chosen as strings of Z operators along the same string locations.

The behavior of strings in the 2D color code is richer than in the surface code. Strings can
“branch out” while changing color:

We can imagine creating such a string merging point by starting with a single-qubit error,
which creates an excitation triplet, and then moving the individual excitations around:

Strings can thus be deformed into more complicated objects called string-nets:

A decoder will want to account for such possibilities when associating an equivalence class
of error operators to a set of observed syndromes.
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The color code can be viewed as a physical model that exhibits an interesting topological
phase with ties to exotic phases of matter studied in condensed matter physics.

A trick to obtain a planar 2D color code is to tile the 2-sphere (embedded in three
dimensions) with a 3-valent, 3-colorable lattice; we then remove one vertex along with its
adjoining faces:

We associate to each boundary a color, which is that of the associated face that we erased:

Strings can end on a boundary of the corresponding color:

Logical operators for the triangular planar color code we drew above can be chosen as
follows:

In its simplest form, this is a code on seven qubits:
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Writing out the stabilizer generators of the 7-qubit color code explicitly, we find:

X1X3X5X7 , X2X3X6X7 , X4X5X6X7 , (6.18)
Z1Z3Z5Z7 , Z2Z3Z6Z7 , Z4Z5Z6Z7 , (6.19)

and with logical operators

X = X3X5X6 ∼ X1X2X3X4X5X6X7 ; (6.20)
Z = Z3Z5Z6 ∼ Z1Z2Z3Z4Z5Z6Z7 . (6.21)

This is exactly the [[7, 1, 3]] Steane code!

Color codes offer an alternative construction of topological codes with a perfect symmetry
between X-type and Z-type stabilizers. As a CSS code, HX = HZ .

This symmetry between X-type and Z-type stabilizers will prove useful for fault tolerant
quantum computation: it enables the color code to offer appealing schemes for performing
more advanced logical gates (e.g. all Clifford gates). We’ll return to this point in the
following chapters on fault tolerance.

Color codes can be generalized to three dimensions (and beyond). In D dimensions, the
lattice needs to be colored with D+ 1 different colors. The structure of higher-dimensional
color codes is also somewhat richer, and the generalization of the color face operators might
not commute. These codes form subsystem codes, which we might introduce later if we
have the time.

A 2D color code can be viewed as two superimposed copies of the surface code. It also
has a homological description and can be constructed using the homological procedure
described above.

6.4 Further reading

Recommended reading includes great lecture notes on topological codes by Dan Browne [13].

For useful insights on the homological structure of CSS codes we point in particular to one
of the original papers on the subject [44]. See also Nikolas Breuckmann’s Ph.D. Thesis [9].

Valuable explanations of color code constructions are given in Refs. [10, 38, 45]. A detailed
anyonic condensed matter picture applicable to color codes can be found in Refs. [46, 47].
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Chapter 7

Fault Tolerance I: Code memory thresholds

So far, we’ve been concerned with constructing codes that have good properties in terms of
their ability, in principle, to correct a high number of errors. Now, we’ll revisit some of our
initial assumptions with the focus on engineering schemes that can protect information
in realistic hardware over extended periods of time and which can be used to perform a
quantum computation.

Specifically, we’ll be concerned with the following points:

• If each physical qubit suffers noise independently, then scaling up codes to many
physical qubits also increases the total amount of noise the system suffers. Are we sure
that using a larger code will offer better protection rather than being overwhelmed
by the additional noise?

• So far, we’ve assumed that the recovery operation, which includes syndrome mea-
surements, are ideal and do not suffer any noise. What happens when the recovery
procedure is faulty?

• We want to run a quantum computation on the encoded qubits. How can we apply
a universal set of gates on the logical qubits? What if the implementation of these
gates also suffers from noise?

We’ll study these questions sequentially. While we’ll discuss some of these concepts in
the context of general quantum error-correcting codes, we’ll also put a focus on providing
answers and illustrating these concepts for the surface code in particular.

7.1 Error-correcting code threshold

So far, we’ve quantified a code’s ability to protect against errors by its distance. For the
surface code, the distance grows as the lattice size L, meaning d ∼ L ∼

√
n. If each qubit

suffers a noise rate p, meaning that each individual qubit has a probability p of being
corrupted by an error operator, then we can expect ∼ pn corrupted qubits after exposure
to the noise. But we see that pn ≫

√
n for large n, meaning that the expected number

of errors can become much larger than the code’s distance. Does this indicate that the
surface code fails to protect information for large n?

The distance of a code is a worst-case measure that is often too pessimistic. The distance
metric guarantees that strictly all errors below half the distance are, for sure, correctable.
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7.1. ERROR-CORRECTING CODE THRESHOLD

In the surface code, a string of length L ∼
√
n is a nontrivial logical operator, so the

distance cannot exceed L. Yet most errors of weight ∼
√
n would look like scattered

errors on the surface, and would not lead the decoder to cause a logical error; they remain
perfectly correctable.

Rather than the distance, we’re interested in the probability that the recovery of the
encoded information fails after exposure to the noise. This is the logical error rate or
logical failure rate pL.

In general, the precise definition of pL should include any assumptions about the noise
model, the decoder employed, etc. It also depends on the desired task, for instance, to
simply store qubits in memory or to run a quantum computation.

Let us for now consider the task of simply storing the qubits while protecting them from
noise. Then pL can be defined as the overall probability of the decoder causing a logical
error.

The code thus uses n qubits, each with failure rate p, to simulate k qubits with failure rate
pL.

If pL > p, the error-correcting scheme makes the qubits worse! This situation can happen,
for instance, if the physical noise rate p the qubits suffer is too high or if the error-correcting
code and/or decoder are too naive.

However, if pL < p, then the new qubits are better than the original physical qubits. This
is the situation we’d like to engineer.

For a family of codes parametrized by their number of qubits (for instance, surface codes
of various lattice sizes; alternatively, a simple code concatenated multiple times with itself),
we say that the code family has a threshold if there is some noise rate pthres (the threshold)
such that for all p < pthres, we have pL(p) → 0 as n → ∞.

Often, when a code family has a threshold, the logical error rate pL(p) for p < pthres decays
exponentially in some fixed power of n. This means that the overhead required for fault
tolerance, in principle, is only n ∼ poly(log(1/ϵ)) where ϵ is the desired logical error rate.

The threshold of a code family actually depends on many details and assumptions. These
include:

• The specifics of the noise model;

• The chosen decoder and classical computation power;

• How syndromes are measured and how noise can induce faulty syndromes (which we
have not considered yet here);

• The logical operations we want to do;

• etc.

Depending on the assumptions that went into the definition of pL, the corresponding
threshold may change significantly. Thresholds associated with some standard assumptions
are sometimes given more specific names:

102



7.2. THE SURFACE CODE HAS A THRESHOLD

Assumption on the task: A threshold associated with the task of storing a logical qubit
while protecting it from noise can be called a memory threshold.

Assumptions on the noise model:

• code capacity threshold: We assume that syndrome measurements are instanta-
neous and perfectly noiseless.

• phenomenological noise threshold: We model errors in the syndrome measure-
ments as the wrong outcome occurring with a fixed probability independently for
each measured stabilizer generator; the syndrome readout is instantaneous.

• For the circuit-level noise threshold, we write out explicit circuits for the measure-
ment of stabilizers in terms of single-qubit gates, two-qubit gates, and the preparation
and measurement of ancillary qubits. We assume that each step (preparation, gate,
measurement) is subject to noise in a suitable noise model.

Instead of studying the asymptotic behavior in n, we can fix a code instance (we fix n),
and we can ask if there is a ppseudothres such that pL(p) < p for all p < ppseudothres. Such
ppseudothres is called a pseudothreshold. (It’s not a threshold in the precise sense defined
above, as it applies for a fixed n.)

When a code has a threshold, we can usually witness it by plotting the logical error rate
pL against the physical error rate p as we scale the code up:

If a code family has a threshold pthres, then as long as the physical error rate p is below
pthres, we can in principle implement logical qubits with arbitrary small levels of noise, by
picking a sufficiently large code.

7.2 The surface code has a threshold

Here, we’ll prove that the surface code has a memory threshold using a simple argument
(see [3]). Consider the code capacity threshold setting, with the following assumptions:
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• Each qubit suffers an X error with probability p, and independently, a Z error also
with probability p;

• Syndrome measurements happen instantaneously and are perfectly noiseless;

• Fast and accurate classical computation for decoding;

• We fix pL as the probability of the event that the decoder picks a correction operation
that induces a logical error. Let F = F (syndrome(E)) be the correction Pauli
operator that is chosen by the decoder as determined by the observed syndrome,
such that FE commutes with all stabilizers (all stabilizer outcomes are restored to
+1). We define:

pL =
∑
E

Pr(E) Pr
[
FE ∈ N(S) \ ⟨i,S⟩

∣∣∣ syndrome(E)
]
, (7.1)

where the sum ranges over all Pauli operators E with the fixed global phase +1;
equivalently, it ranges over all 2n-bitstrings in the binary symplectic representation
of the Pauli operators.

Because the code is CSS, we can correct each error type separately, ignoring the other type.
Let’s focus first on Z-type errors, which are caught by the X-type star operators.

Suppose a Z-type error E = Zc occurs, where c is a 1-chain corresponding to the subset of
edges on which the error applies a Z operator.

We measure all the stabilizers, leading to a syndrome vector syndrome(E). Based on this
information, a decoder selects a Pauli recovery operation F to apply; if FE is a stabilizer
(up to a phase), the error is successfully corrected. The correction F is a collection of Z
operators that we can describe with another 1-chain f , F = Zf .

Let us choose the decoder to be the minimum weight decoder: F is chosen as the correction
operation F = Zf such that FE commutes with all stabilizers (restores all syndrome
outcomes to +1) and such that f has minimal weight |f |. That FE commutes with all
stabilizers implies that the chain c+ f has no boundary (or else it would leave a nontrivial
syndrome outcome at that boundary), so it is a cycle: c+ f ∈ Z1. The decoder, therefore,
determines the 1-chain f of smallest weight |f | such that c+ f has no boundary:

We would like to upper bound the probability that c+ f is a homologically nontrivial cycle.
This can only happen if c+ f has length at least L, the width of the surface code lattice. It
turns out there is a simple counting argument that upper bounds the probability that c+ f
contains any long closed loop, which must be the case if c+ f contains a homologically
nontrivial loop.
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Suppose c+ f contains a closed loop o of length ℓ. If more than half of the edges of o lie in
f rather than in c, we could reduce the weight of f via f → f + o; f would not be the
correction operation with minimal weight, contradicting our earlier assumption. So at least
half of the edges of o lie in c. Therefore, for any closed loop o of length ℓ, the chain c+ f
can only contain o if there at least ℓ/2 edges of o are in c.

Fix a loop o of length ℓ. We can upper bound the probability that c + f contains o as
follows. Consider all possible partitions of the edges of o into sets of edges s and s̄ = s+ o
(i.e., s+ s̄ = o and s, s̄ ⊆ o); exactly one such (s, s̄) will identify which edges of o belong to
c and which edges belong to f . Furthermore, we just saw that we can only have s ⊆ c and
s̄ ⊆ f if |s| ≥ ℓ/2, so

Pr
[
o ⊆ c+ f

]
=

∑
s⊆o : |s|≥ℓ/2

s̄=s+o

Pr
[
s ⊆ c and s̄ ⊆ f

]
. (7.2)

We can upper bound each probability as Pr
[
s ⊆ c and s̄ ⊆ f

]
≤ Pr[s ⊆ c] ≤ p|s| ≤ pℓ/2,

since s ⊆ c means that the random chain c has each edge of s affected by an error which
happens with probability p independently on each edge, and since |s| ≥ ℓ/2. Because there
are at most 2ℓ subsets of o, we find

Pr
[
o ⊆ c+ f

]
≤ 2ℓpℓ/2 . (7.3)

(In this argument, the probability is taken over the error c; the correction f is a function
of c, f ≡ f(c); and o is completely fixed.)

The overall probability of failure p(Z)
L for Z-type errors can now be upper bounded as

follows:

p
(Z)
L ≤

∑
o homologically nontrivial

Pr
[
o ⊆ c+ f

]
≤

∑
o : |o|≥L

Pr
[
o ⊆ c+ f

]

=
2L2∑
ℓ=L

Mℓ · 2ℓpℓ/2 , (7.4)

where Mℓ is the number of loops of length ℓ and where no loop can have more than the
2L2 total number of edges on the lattice. To upper bound Mℓ, we fix a starting point and
a length ℓ; the loop can start in any of 4 directions and then pick any of 3 directions for all
subsequent steps. There are L2 possible starting points, so Mℓ ≤ L2 · 4 3ℓ−1. Therefore

p
(Z)
L ≤

2L2∑
ℓ=L

4L2 3ℓ−1 2ℓ pℓ/2 ≤ 4
3L

2
2L2∑
ℓ=L

(36p)ℓ/2 , (7.5)

If we assume that 36p < 1, or equivalently p < 1/36, then

p
(Z)
L ≤ 8

3L
4(36p)L/2 L→∞−−−−→ 0 (7.6)

since the exponential decay in L dominates the poly(L) term.

We can apply exactly the same argument to correct X-type errors with the Z-type
stabilizer syndromes, by reasoning on the dual lattice instead of the original lattice. Indeed,
pL ≤ p

(Z)
L + p

(X)
L ; if both p

(X)
L and p

(Z)
L decay to zero as L → ∞, then pL also decays to
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zero.

This proves that the surface code has a threshold. At any physical error rate p < 1/36 ≈
2.7 %, the logical failure rate pL decays to zero in the large system size limit.

It turns out that the value 1/36 ≈ 2.7 % is a pessimistic estimate of the threshold value.
In the following section, we’ll use more powerful techniques to prove that the threshold of
the surface code in this setting is higher, at ≈ 10 %.

7.3 Surface code threshold from statistical mechanics

The above argument is useful to prove the existence of a code capacity memory threshold
for the surface code, but it is a bit too crude to reliably estimate the precise threshold value.
Here, we present a powerful argument that can determine the value of this threshold, based
on a formal mapping of the calculation of the failure rate pL to a problem of determining
physical properties of a specific model from statistical physics.

We operate with the same assumptions as in Section 7.2 and use the same definition of the
logical failure rate pL, with uncorrelated X/Z errors and where we’ll choose the decoder to
be either a minimum-weight decoder or a maximum-likelihood decoder. Again, X and Z
errors are decoded separately; the argument we present here applies to Z errors, but the
same argument applied to the dual lattice picture yields the same threshold for correcting
X errors.

For a Z-type error, we can write E ∝ Zc, where c is a 1-chain describing the subset of the
edges on whose qubits E acts with a Pauli-Z operator.

The probability of E occurring is

Pr[c] = (1 − p)n−|c|p|c| = (1 − p)n
( p

1 − p

)|c|
. (7.7)

A decoder must decide, based on the observed syndrome syndrome(E), which Pauli
correction operation F to apply. The correction operation only needs to be determined up
to a stabilizer, since stabilizers act trivially on the code space. Therefore, a decoder must
decide whether it is better to apply a correction operation represented by a 1-chain c (or
any homologically equivalent c′ ∼ c), or to apply instead a correction operation represented
by a 1-chain of the form c+ z where z is a homologically nontrivial cycle.

For maximum likelihood decoding, we need to compute the probability of each class
of stabilizer-equivalent errors and pick the class with highest overall probability. The
probability of a given error class is computed by summing up the probability weights
associated with all homologically equivalent chains c′, i.e., all chains c′ such that c+ c′ is a
closed loop with trivial homology. I.e., there is a 2-chain r such that c+ c′ = ∂r:
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The probability of all errors c′ that are homologically equivalent to c is then:

Pr[c] =
∑
c′:

∃ r : c+c′=∂r

Pr[c′] . (7.8)

In order to compute Pr[c] and Pr[c+ z] for any given z, let’s first express Pr[c′] in terms of
Pr[c] for any 1-chain c′ that has the same syndrome as c. We express c′ = c+ w for some
1-cycle w, noting that wℓ = 1 whenever cℓ ̸= c′

ℓ:

Pr[c′] = Pr[c]
∏

ℓ : cℓ ̸=c′
ℓ

{
p

1−p if cℓ = 0 and c′
ℓ = 1

1−p
p if cℓ = 1 and c′

ℓ = 0

}

= (1 − p)n
( p

1 − p

)|c| ∏
ℓ : wℓ=1

( p

1 − p

)(−1)cℓ

= (1 − p)n exp
{∑

ℓ∈c

log
( p

1 − p

)
+
∑

ℓ

wℓ · (−1)cℓ log
( p

1 − p

)}
. (7.9)

In the last line, we expressed |c| =
∑

ℓ∈c 1 where c is thought of as a subset of links ℓ (with
ℓ ∈ c ⇔ cℓ = 1), and the coefficient wℓ in the second term ensures that the term is only
nonzero when wℓ = 1. We now define

J := 1
2 log

(1 − p

p

)
; uℓ = 1 − 2wℓ =

{
+1 if wℓ = 0
−1 if wℓ = 1.

(7.10)

The symbol J will help us simplify the notation whenever terms of the form log(p/(1 − p))
appear. The variable uℓ simply denotes the sign ±1 associated with the binary value wℓ,
and will prove useful as we drift towards concepts in statistical mechanics. Let’s continue
our computation to find

Pr[c′] = (1 − p)n exp
{

−J
[∑

ℓ∈c

(
2 − 2wℓ

)
+
∑
ℓ/∈c

2wℓ

]}

= (1 − p)n exp
{

−J
[∑

ℓ∈c

(
1 + uℓ

)
+
∑
ℓ/∈c

(
1 − uℓ

)]}

= (1 − p)n e−nJ exp
{
J
∑

ℓ

(−1)cℓuℓ

}
. (7.11)

Setting Jℓ := (−1)cℓ J , we find

Pr[c′] =
[
p(1 − p)

]n/2 exp
{∑

ℓ

Jℓuℓ

}
. (7.12)

To compute Pr[c], we need to sum up Pr[c′] over all c′ that differ from c by a 1-boundary
cycle w:

Pr[c] =
∑

w∈B1

Pr[c+ w] . (7.13)

The values wℓ ∈ {0, 1}, or equivalently, uℓ ∈ {+1,−1}, identify which edges we need to flip
to map c to c′:
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Anticipating a connection with spin models in statistical mechanics, we place a spin
sj ∈ {+1,−1} on each plaquette and set uℓ to be the product of the spins on the plaquettes
adjoining the link ℓ, i.e., uℓ = sisj where i, j are the faces that touch the link ℓ:

Of course, any spin configuration {sj} corresponds to a 2-chain r with sj = (−1)rj , and u
corresponds to the boundary of r via uℓ = (−1)wℓ and w = ∂r.

Now we’ve parametrized all w ∈ B1 via spin configurations {sj}. (Note a redundancy in
the parametrization on the torus, as sj → −sj gives the same {uℓ}.) Then

Pr[c] = C
[
p(1 − p)

]n/2 ∑
{sj}

exp
{ ∑

ℓ=⟨i j⟩
Jℓsisj

}
, (7.14)

where a constant C accounts for any redundancies in the parametrization (on the torus,
C = 1/2), and where the notation ℓ = ⟨i j⟩ refers to a link ℓ with adjoining faces i, j.

Let’s write, recalling Jℓ = (−1)cℓJ :

Pr[c] = C
[
p(1 − p)

]n/2 ∑
{sj}

exp
{

−J H({sj})
}
, (7.15)

with

H({sj}) = −
∑

ℓ=⟨i j⟩
τℓ sisj ; τℓ = (−1)cℓ . (7.16)

We recognize the partition function of a spin model with the Hamiltonian H, at inverse
temperature β = J . The Hamiltonian H has Ising-type nearest-neighbor couplings τℓ that
vary on each individual link.

The connection to statistical mechanics is useful because this type of model has been
extensively studied. Let’s have a closer look at this model:
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• Degrees of freedom: {sj} with sj ∈ {+1,−1};

• Couplings: τℓ ∈ {+1,−1}. The couplings are treated as fixed parameters of the
model for now.

• Hamiltonian: Hτ ({sj}) = −
∑

ℓ=⟨i j⟩ τℓ sisj .

We’ll occasionally write τ ≡ τ(c) if τℓ = (−1)cℓ is obtained from the 1-chain c.

Spin configurations with low energy can be thought of as follows. We ask of the spins
to align across every link for which τℓ > 0, but to anti-align at every link where τℓ < 0.
Any violation of this assignment can be thought of as incurring an energy penalty for each
violation. For example:

Consider the spin configuration that sets sj = +1 on all sites j. It violates a number
of terms determined as the size of the set {τℓ < 0} (below left). It might not be the
energetically optimal configuration. The energetically optimal configurations are generally
nontrivial, and there might be multiple optimal configurations (below center and right).

The physics of the model actually only depends on the boundary of c, which can be seen as
follows. If c′ = c+ w with w = ∂r for some 2-chain r, then τℓ = (−1)cℓ → τ ′

ℓ = (−1)wℓ τℓ.
Consider now the change of variables

sj → s′
j =

{
sj if j /∈ r

−sj if j ∈ r .
(7.17)

Then we have that the term τℓ sisj → τ ′
ℓ s

′
is

′
j is invariant; indeed, flipped links ℓ ∈ w are

precisely links across which exactly one of the two adjoining spins were flipped by the
change of variables. Therefore, Hτ (s) → Hτ ′(s′) = Hτ (s).

109



7.3. SURFACE CODE THRESHOLD FROM STATISTICAL MECHANICS

The physical properties of a statistical mechanical model at fixed inverse temperature β
are encoded in its partition function:

Z(β, τ) =
∑
{sj}

exp
{

−βHτ ({sj})
}
. (7.18)

It is often more convenient to work with the free energy

F (β, τ) = − 1
β

log
(
Z(β, τ)

)
. (7.19)

Therefore: The probability of an error class Pr[c] is determined by the partition function of
the associated spin model with the couplings τ(c) and with β ≡ J = −(1/2) log(p/(1 − p)).

The logical error rate pL involves an averaging over all possible errors, weighted by their
probability of occurrence. An X-type error E ∝ Xc occurs with probability Pr[c] =
(1 − p)n−|c|p|c|. In the spin model, E is mapped to the configuration of couplings τ(c).

The couplings can therefore be thought of as being chosen at random. Once they are
sampled, they are fixed and not subject to thermal fluctuations. This is called quenched
disorder.

In our spin model, the parameters τℓ of the model are chosen at random in the form of
quenched disorder; they individually take the value +1 with probability 1 − p and the value
−1 with probability p. This model is the random-bond Ising model, which has been
extensively studied.

The random-bond Ising model has two parameters, the bond probability p and the temper-
ature T = β−1.

At p = 0, all couplings are ferromagnetic (spins should align to achieve energetically
favorable configurations) and there is no disorder; we recover the usual Ising model. The
latter has a phase transition at a critical temperature Tcrit between a phase where all
spins are mostly aligned (ferromagnetic phase at T < Tcrit) and a phase where thermal
fluctuations dominate (the paramagnetic phase at T > Tcrit).

At T = 0, on the other hand, we can break the ordered phase by increasing p instead of T .
There is a critical pcrit,0 up until which the system remains ordered, but beyond which the
bonds start becoming too “incompatible with one another” and order breaks down. In the
latter case, bonds are said to be frustrated and we find a spin-glass phase.

The random-bond Ising model’s phase diagram is presented in Fig. 7.1. The phase
diagram is divided into two regions, an ordered phase for small p and small T , where
spins are mostly aligned, and a disordered phase, where there are no significant long-range
correlations between the spins. A phase transition (solid black line above) separates the
two regions.

It turns out the system exhibits some enhanced symmetry properties along the line
e−2β = p/(1 − p), called the Nishimori line. Along this line, the thermal fluctuation
probability associated with flipping a bond coincides with the relative probability of the
bond flipping sign across different disorder samples.

In our mapping of the decoding problem to the random-bond Ising model, we had β ≡
J = −(1/2) log(p/(1 − p)), which is exactly the condition for the Nishimori line! Along the
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Figure 7.1: Phase diagram of the random-bond Ising model.

Nishimori line as we increase p, there is a phase transition at a critical value pcrit between
the ordered phase and the disordered phase.

To diagnose which phase the system is in, we can inspect the domain wall free energy,
defined as the difference in free energy caused by flipping all bonds across a homologically
nontrivial cycle z:

∆z

(
β, τ(c)

)
= F

(
β, τ(c)

)
− F

(
β, τ(c+ z)

)
. (7.20)

Let’s average this quantity over the disorder:[
∆z

(
β, τ(c)

)]
p

≡
∑

c

Pr[c] ∆z

(
β, τ(c)

)
. (7.21)

In the ordered phase (low T and low p), it turns out that
[
∆z

(
β, τ(c)

)]
p

diverges with the
system size. I.e., introducing a domain wall requires an extensive amount of energy.

In the disordered phase,
[
∆z

(
β, τ(c)

)]
p

saturates to some finite value, so the domain wall
free energy per site vanishes.

Whether the spin model’s phase is ordered or disordered maps directly onto whether the
logical error rate pL goes to zero or remains finite in the large-system limit:

• If
[
∆z

(
β, τ(c)

)]
p

≫ 0 for all nontrivial loops z, then Pr[c+ z] ∼ Z
(
β, τ(c + z)

)
=

exp
{
−β∆z(β, τ(c))

}
Z
(
β, τ(c)

)
≪ Pr[c] so Pr[c] dominates the other error class

probabilities Pr[c+ z]’s for homologically nontrivial 1-cycles z. The error class will
be successfully identified by the maximum-likelihood decoder.

• If (1/L)
[
∆z

(
β, τ(c)

)]
p

→ 0, then Pr[c+ z] ∼ Pr[c] for homologically nontrivial cycles
z and the decoder has a significant probability of choosing the incorrect option c+ z
rather than c.

The phase transition between the ordered phase and the disordered phase in the random-
bond Ising model therefore directly translates into the regimes in which the surface code can
be decoded to arbitrary accuracy in the large-system size limit, and where decoding is likely
to fail. We therefore find a threshold for the surface code (subject to our assumptions listed
earlier) that coincides with the ordered-disordered phase transition of the random-bond
Ising model on the Nishimori line, which is at

pthres = pcrit ≈ 11 % . (7.22)
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A summary of the mapping between surface code decoding and the random-bond Ising
model appears in Fig. 7.2.

Figure 7.2: Summary of mapping the problem of decoding the surface code and the phase
transitions of the random-bond Ising model.

If the error rate of the physical qubits is below the threshold value pcrit ≈ 11 % (for
both X and Z type errors), then the surface code can be used to encode a qubit with
arbitrarily low logical error rates in the setting where all the optimistic assumptions we
made at the beginning of the chapter hold (perfect measurements, uncorrelated noise,
maximum-likelihood decoding, etc.).

What if we used a minimum weight decoder instead of a maximum likelihood decoder?
Recall that the latter can be implemented efficiently using the minimum-weight perfect
matching algorithm, unlike maximum-likelihood decoding which is generically hard.

The minimal-weight error c′ that is homologically equivalent to c is, in fact, the minimum
energy configuration of the associated spin model. Indeed, it’s the configuration that
violates the fewest bonds. The relevant threshold therefore coincides with pcrit,0 along the
T = 0 line in the phase diagram of the random-bond Ising model (Fig. 7.1), recalling that
the T = 0 state is the ground state of the model when the latter is unique. The threshold
pcrit,0 is believed to take a value around

pcrit,0 ≈ 10 % . (7.23)
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7.4 Surface code threshold with measurement errors

In this section, we’ll try to lift some assumptions that we made in the previous section and
which were overly optimistic for realistic settings.

Syndrome measurements of the surface code involve measurement weight-4 Pauli operators.
These typically require the application of several 2-qubit gates and involve an ancillary
qubit. Certainly the resulting measurements can be faulty, if an error creeps in at any
point of this procedure.

Let us first simply assume that syndrome measurements have noisy outcomes: The stabilizer
is measured noiselessly and instantaneously, but the outcome is flipped with probability q.

Then, each syndrome outcome falls into one of four cases:

• a genuine defect, correctly detected (outcome −1);

• a genuine defect, not detected (outcome +1);

• no genuine defect, correctly reported as no defect (outcome +1);

• no genuine defect, but defect falsely reported (“ghost defect”; outcome −1).

A decoder that does not account for measurement errors could easily be misled into causing
a logical error. Consider, for example, the following defect pattern:

In this example, a single short error string leads to two genuine defects at its endpoints.
One genuine defect is reported correctly whereas the other one fails to be detected due to
a measurement error. Additionally, a ghost defect appears at a distant location because of
a measurement error. Seeing two defects, a decoder might match them up, introducing a
large error string (red dotted line) which is likely to lead to a logical error in future rounds
of error correction.

Again, we focus only on Z-type errors causing X-type defects (star operators). The analysis
for X-type errors follows via a similar argument on the dual lattice.

A simple way to enhance the reliability of our picture of the errors is to measure the
stabilizers multiple times. Then we’ll notice if measurement outcomes are consistent over
time, and we’ll be able to identify the faulty measurement outcomes.

We can represent the outcomes in three directions, the third dimension representing time:
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We consider a 3-dimensional square lattice that is interleaved between the timelike copies
of the code, such that syndrome outcomes are associated with vertical edges. The copies
of the surface codes are the black grids, and the new 3D grid is drawn in red:

We suppose that syndrome readouts (where measurement errors can happen) are interleaved
with times at which qubit errors can occur. The qubit errors happen at the horizontal
edges of the new 3D lattice. Measurement errors happen during the syndrome readout at
the vertices of the original horizontal grid copies, which coincides with vertical edges of the
3D lattice.

The syndrome measurement outcomes are placed on the vertical edges of the 3D lattice,
providing a “history” of the possibly different outcomes in time. It is a 1-chain on the 3D
lattice that contains only vertical edges:

The above pattern may have been caused, e.g., by the following configuration of qubit and
measurement errors:

Observation: The chain of observed syndrome outcomes and the actual error chain (with
qubit and measurement errors) must have the same boundary!

Proof. Let x be the 1-chain of observed syndrome outcomes and E be the 1-chain of both
qubit or measurement errors. The 1-chain x+ c may contain both horizontal and vertical
edges. The vertical links of x+ c correspond to genuine defects propagating in time (either
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a correctly detected defect, or an incorrectly missing defect). The horizontal links of x+ c
are either the creation or annihilation of a defect pair, or the propagation of a defect from
one location to a neighboring location. Therefore, x+ c are closed loops associated with
defect world lines. ■

The measured syndrome outcomes therefore reveal the boundary of the error chain. This
was already the case in 2D with perfect measurements; with measurement errors we find a
very similar picture in 3D!

For a decoder to accurately diagnose the error chain (up to homological equivalence), it
must determine which homology class of errors c is likeliest, with c = x+w for a 1-cycle w.
Here,

Pr[c] =
∑

w∈B1

Pr[c+ w] . (7.24)

Again, Pr[c] is determined by the partition function of a spin model now associated with a
three-dimensional version of the random-bond Ising model along its Nishimori line.

Minimum-weight error decoding again corresponds to the T = 0 state of the associated
spin model.

We usually suppose for simplicity that the measurement error probability equals the qubit
error probability, q = p, to ensure the spin model is isotropic and to simplify the analysis.

In this case, numerical evidence points to an error probability threshold of

p
(3D)
crit,0 ≈ 3 % . (7.25)

The relevant 3D spin model is also called the random-plaquette Z2-gauge model.

In the random-plaquette Z2-gauge model, we can think of spins sj ∈ {±1} as residing on
the plaquettes of the primal lattice. The uℓ reside on the primal links and are determined
as the boundary of the spin configuration viewed as a 2-chain.

More explicitly, we can write uℓ = sasbscsd with ℓ = ⟨a b c d⟩ denoting a link ℓ adjoined by
four plaquettes a, b, c, d:

In this model, introducing “antiferromagnetic links” (τℓ = −1) means energetically favoring
configurations which have an odd number of sa = −1 around the links ℓ with τℓ = −1.

On the dual lattice, we have uℓ ≡ up̃ and sa = sℓ̃ for a dual plaquette p̃ and dual links ℓ̃.
Then

up̃ =
∏

ℓ̃∈∂p̃

sℓ̃ . (7.26)

We can think of excitaitons as “magnetic flux tubes” that “travel” along the dual links.
The Z2-valued “magnetic flux” through a dual plaquette p̃ is up̃.
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An antiferromagnetic link (τℓ = −1) is interpreted as a dual plaquette p̃ where a nontrivial
flux up̃ = −1 is energetically favorable (τp̃ = −1).

If a dual cube C̃ has an odd number of dual plaquettes p̃ ∈ ∂̃C̃ with τp̃ = −1, then it is
energetically favorable to have “magnetic flux tubes” terminate in the dual cube C̃. The
dual cube C̃ can be thought of as a Z2 “magnetic monopole.”

7.5 Surface code threshold with realistic error models

General results about code thresholds going beyond the assumptions we’ve made are
difficult to compute without directly simulating the system we consider. In particular,
details about measurement schedules, a carefully calibrated noise model, and a fine-tuned
decoder go beyond what we can show with spin-model mappings.

For precise threshold estimates with numerical simulations, one often considers circuit-level
noise, where all measurements and other operations are decomposed into hardware gates
and noise is applied at each time step according to a carefully-chosen noise model.

Writing out explicitly how syndromes are measured also gives us an additional guide for
improving the fault tolerance of error-correcting operations such as syndrome readout:
We must avoid, as much as possible, existing errors from spreading out into
higher-weight errors.

For instance, consider the following circuit that can read out X1X2X3X4 (e.g., a star
operator of the surface code) using 2-qubit gates and an ancillary qubit:

Suppose the ancillary qubit suffers a single X error early during the readout (“ ” above).
The remaining CNOT gates blow this error up into a weight-3 error on the data qubits!

While there exist clever schemes that enable readout of stabilizers without increasing the
weight of errors, they typically require significant overheads (e.g., in the number of qubits).
(We could use, for instance, the so-called Shor or Steane syndrome readout schemes, see
[1, Chap. 12].) In the surface code, however, such schemes turn out not to be necessary.
Instead, the order of the CNOTs in the circuit above should be optimized so multiple
syndrome readouts can happen in parallel, all while minimizing the spreading of errors.

Estimates for the threshold of the surface code with circuit-level noise are around pthres ≈
0.01.

7.6 Further reading

The mapping between decoding the surface code and the ordered phases of the random-
bond Ising model was introduced by Dennis et al. [37]; this paper remains a primary go-to
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reference to understand this mapping. The mapping is also well explained in Bombín’s
book chapter [38] and Fujii’s review paper [5].

The argument on the existence of a threshold for the surface code is presented in Preskill’s
renowned lecture notes [3]; see specifically this file.

The statistical model mapping can be extended to study thresholds for the color code, see
e.g. refs. [10, 48, 49] and references therein. Ref. [48] also contains a clear explanation of
the different types of code thresholds.

Codes with code capacity thresholds are collected in a list in the error correction zoo.1

Recent developments have furthermore emphasized the necessity of viewing the quantum
error correction protocol as happening over time, leading to a space-time view of quantum
error correction. This picture is illustrated by the 3D spin model on which we mapped the
decoding of the surface code with measurement errors. Modern views of decoding include
detector error models [50].

Exciting recent demonstration of quantum error correction near or below threshold were
presented in superconducting qubits [51], trapped ions [52] and in neutral atoms [53].

1https://errorcorrectionzoo.org/list/quantum_code_cap_threshold
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Chapter 8

Fault Tolerance II: Computation on encoded states

Let’s now turn to one of our core objectives of this course: How can we not only reliably
store qubits in memory, but also perform some computation with them?

We’ll begin by making some general statements about quantum error-correcting codes and
qubit stabilizer codes, and we’ll then assemble the different parts return to fault-tolerant
computation with the surface code.

8.1 “Baby” fault-tolerant quantum computation: transversal gates

As we’ll see, some logical gates are often very easy to perform on encoded states; however,
implementing a universal gate set often requires significant overheads to circumvent some
powerful no-go theorems.

Consider the [[7, 1, 3]] Steane code, which has the same X-type and Z-type stabilizers along
with the logical operators X = X⊗7, Z = Z⊗7. If we apply H⊗7, the Hadamard gate on
all qubits, we swap the role of X and Z on each qubit. We remain in the code space, while
X and Z are swapped! This is a logical Hadamard operation.

Suppose the physical Hilbert space is a tensor product of n subsystems, HP = HP1 ⊗
· · · ⊗ HPn , and consider an isometric encoding such that the erasure of any of the HPi is
correctable. A transversal operation is an operation that is implemented as a single layer
of independent physical operations F = F1 ⊗ · · · ⊗ Fn, where each Fi acts only on HPi .

While transversality depends in principle on the chosen tensor product decomposition,
there is usually a standard or obvious decomposition that is implied. For instance, if the
physical space consists of n qubits, transversality refers to operations acting individually
on each qubit.

Suppose we have multiple instances of a [[n, k, d]] qubit code, each instance encoding k
logical qubits into a set of n physical qubits. (These instances are called code blocks.) For
the definition of transversality, we usually take HPi as the collection of all the i-th qubits
of each block. A transversal gate between multiple code blocks enables logical gates to be
performed that connect the different sets of k logical qubits. A transversal gate generally
looks like this:
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Transversal implementations of logical gates are naturally fault-tolerant: They do not
spread errors across the different subsystems. Furthermore, products of transversal gates
are again transversal.

We’re usually happy when we can implement a logical gate transversally.

For stabilizer codes, we’ve seen that logical Paulis can be implemented transversally. In
particular, Y = iXZ.

To better understand which logical gates can be implemented transversally on stabilizer
codes, recall that a Clifford unitary U is one that conjugates Paulis to Paulis, i.e., UPU † ∈
Pn for all P ∈ Pn.

Lemma 14. Consider a stabilizer group S = ⟨S1, . . . , Sr⟩. A Clifford unitary U is a logical
operator if and only if it conjugates the stabilizer group S onto itself, i.e., USjU

† ∈ S for
each Sj.

Proof. As U is a Clifford unitary, it conjugates the {Sj} to new Pauli operators {S′
j},

with S′
j = USjU

† ∈ Pn. If U is a logical operator, i.e., [U,Π] = 0, then for any Si ∈ S we
have S′

jΠ = USjU
†Π = USjΠU † = UΠU † = Π (recall ΠSj = Π). Thus S′

j |ψ⟩ = |ψ⟩ for all
|ψ⟩ ∈ C so S′

j must be in the code’s stabilizer, S′
j ∈ S.

Conversely, if S′
j = USjU

† ∈ S for all j, then for all |ψ⟩ ∈ C and for all j, we have U |ψ⟩ =
USj |ψ⟩ = S′

jU |ψ⟩ so U |ψ⟩ ∈ C. Therefore, U fixes the subspace Π and [U,Π] = 0. ■

Example: The [[4, 2, 2]] code has the stabilizer group S = {IIII,XXXX,Y Y Y Y, ZZZZ}
and logical Pauli operators X(1) = XIXI, Z(1) = ZZII, X(2) = XXII, Z(2) = ZIZI.
The Pauli logical operators are clearly transversal Clifford gates. The Clifford gate H⊗4

is also a logical operator: it conjugates X⊗4 to Z⊗4 and vice versa, leaving 1⊗4 and Y ⊗4

invariant (note HYH = −Y but signs cancel out over each pair of copies). The gate H⊗4

swaps X(1) with Z(2) and X(2) with Z(1), so it performs logical Hadamards on the 2 qubits
along with a logical SWAP.

Lemma 15. For any CSS code, transversal CNOT’s between two blocks of the code is a
logical operator.

Proof. Write the single-block code stabilizer group S = ⟨{SZ
j }, {SX

j }⟩, where {SZ
j } are

the Z-type stabilizer generators and {SX
j } are the X-type ones. The joint stabilizer group

for the two code blocks is Stot = ⟨{S ⊗ I, I ⊗ S}S∈S}⟩.

Recall CNOT acts by conjugation as XI → XX, ZI → ZI, IX → IX, IZ → ZZ. Then
CNOT⊗n maps SX

j ⊗ I to SX
j ⊗ SX

j ∈ Stot; SZ
j ⊗ I to itself; I ⊗ SX

j to itself; and I ⊗ SZ
j

to SZ
j ⊗ SZ

j ∈ Stot. Since CNOT⊗n maps stabilizer generators to elements of Stot, it is a
logical operator. ■
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In a CSS code, we can always pick the logical Pauli-X operators to consist only of X’s and
I’s, and the logical Z operators to contain only Z’s and I’s. Then, CNOT⊗n between two
code blocks implements logical CNOT’s between all pairs of encoded qubits simultaneously.

The [[7, 1, 3]] Steane code hosts transversal logical Clifford gates. Remember

Transveral gates in the [[7, 1, 3]] Steane code:

• H⊗7: Swaps X and Z on each qubit, performs a logical Hadamard operation. (Thanks
to the symmetry between X-type and Z-type stabilizers as well as the Pauli logical
operators.)

• S⊗7 where S = phase gate = ( 1 0
0 i ): Recall that SXS† = Y , SZS† = Z. Then

ZIZIZIZ → ZIZIZIZ etc. (8.1)
XIXIXIX → Y IY IY IY = (XIXIXIX)(ZIZIZIZ) ∈ S etc., (8.2)

so the stabilizers remain stabilizers. The logical operators are transformed as

Z → Z, (8.3)
X = X⊗7 → Y ⊗7 = (iXZ)⊗7 = −iXZ = −Y . (8.4)

Therefore, S⊗7 is a logical adjoint-phase gate S†.
Alternatively, (S†)⊗7 is a transversal Clifford implementation of a logical phase gate
S.

• CNOTs between two code blocks implements a logical CNOT (as any CSS code).

The Hadamard, phase, and CNOT gates generate teh full multiqubit Clifford group. The
Steane code can therefore implement all Clifford unitaries transversally.

The transversal Cliffords in the Steane code can be attributed to the high degree of
symmetry in the stabilizer group and the logical operators:

• All stabilizer generators have weight multiple of 4. → Helps deal with phases since
i4 = (−i)4 = (−1)4 = 14 = 1.

• It’s a self-dual CSS code (HX = HZ). → The X-type and Z-type stabilizers maps
onto each other via Hadamards; helps ensure that S⊗n is a logical operator.

• Logical X and Z operators have the same support. → ensures correct logical action
of H⊗n and S⊗n.

Some instances of the 2D color code also have these properties and can implement logical
Cliffords transversally.

Exercise: Construct transversal logical Hadamard and phase gates for the 2D triangular
color code studied in the previous chapter, on the hexagonal lattice. (Cf. reference [45].)

Sometimes it is possible to have a transversal implementation of a non-Clifford gate with
non-Clifford single-qubit unitaries. An example of a non-Clifford single-qubit gate is the T
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gate:

T =
(

1 0
0 eiπ/4

)
. (8.5)

Suppose we have a code where |0⟩ is a superposition of computational basis states with
Hamming weight multiple of 8, and that |1⟩ is a superposition of computational basis states
with Hamming weight equal to w modulo 8, with w ̸= 0. Then T⊗n|0⟩ = |0⟩ because each
(T |1⟩) factor contributes a phase eiπ/4, which happens a number of times multiple of 8.
Similarly, T⊗n|1⟩ = eiwπ/4|1⟩. If w = 1, then T⊗n implements a logical T gate.

Such a case happens for some CSS codes, such as the [[15, 1, 3]] quantum Reed-Muller code
(where w = −1). The stabililizer generators of this code can be chosen as:

ZZZZIIIIIIIIIII ,
ZZIIZZIIIIIIIII ,
ZIZIZIZIIIIIIII ,
ZZIIIIIIZZIIIII ,
ZIZIIIIIZIZIIII ,
ZIIIZIIIZIIIZII ,
ZZZZZZZZIIIIIII ,
ZZZZIIIIZZZZIII ,
ZZIIZZIIZZIIZZI ,
ZIZIZIZIZIZIZIZ ,
XXXXXXXXIIIIIII ,
XXXXIIIIXXXXIII ,
XXIIXXIIXXIIXXI ,
XIXIXIXIXIXIXIX .

(8.6)

In fact, this code happens to be a 3D color code.

Can we find a code with a transversal T gate and also transversal Cliffords? Such a code
would support universal quantum computation with transversal gates!

Theorem 16 (Eastin-Knill). There exists no code that supports a transversal, universal
set of logical gates.

Proof. The set of all transversal gates is the compact Lie group T = U(d1) ⊗ · · · ⊗U(dn),
where di = dim

(
HPi

)
, with Lie algebra

t = {A1 + · · · +An , Ai = A†
i operator on HPi} . (8.7)

The subset G of T consisting of logical operators is a closed subgroup of T (a product of
transversal logical operators remains a transversal logical operator, as well as the inverse
of a transversal logical operator), so it is itself a compact Lie group. The group G has Lie
algebra

g =
{
T1 + · · · + Tn : [T1 + · · · + Tn,Π] = 0 , Ti = T †

i acts on HPi

}
. (8.8)

But the erasure of each Hi is correctable; since Ti acts on Hi, we have ΠTiΠ ∝ Π, so
Π(T1 + · · · + Tn)Π ∝ Π. Therefore, for all θ ∈ R, we have

Πe−iθ (T1+···+Tn)Π = Πe−iθ Π(T1+···+Tn)ΠΠ = (phase) Π . (8.9)
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We find that the logical action of all gates generated by g act trivially on the code space!
Therefore, all gates in the connected component of G containing 1 act trivially on the code
space. The logical action of G is therefore a discrete group, and it certainly cannot coincide
with U(dL). ■

Unfortunately, we cannot use transversal gates for universal fault-tolerant quantum com-
putation.

In the following sections, we’ll explore how to implement fault-tolerant computation using
schemes such as magic state distillation that go beyond transversal operations.

Before moving on, let’s cover two quick remarks on operations that are closely related to
transversal operations.

Recall that any CSS code has code words that are an even superposition of computational
basis states corresponding to classical codes, |u+ C⊥

X⟩ =
∑

v∈C⊥
X

|u+ v⟩ with u ∈ CZ , with
logical basis states labeled by elements of CZ/C

⊥
X . A measurement in the computational

basis of all the physical qubits collapses the state onto u + v with a random element
v ∈ C⊥

X . Decoding CZ ensures we catch measurement errors, and the remaining syndrome
of C⊥

X (⊆ CZ) reveals the logical computational basis state. Therefore, any CSS code
supports transversal measurement in the logical computational basis.

Sometimes, logical operations can be performed by simply swapping qubits. E.g. in the
[[4, 2, 2]] code, swapping the 2nd and 3rd qubits performs a logical SWAP:

SWAP2,3 : X1 → X2 ; X2 → X1 ; Z1 → Z2 ; Z2 → Z1 . (8.10)

Swapping qubits can increase the weight of existing errors if not implemented carefully,
which affects fault tolerance.

• Physically swapping two qubits by physically moving them around (e.g., moving
individual trapped atoms around) → OK.

• Physical gate generated by XX + Y Y + ZZ within the computational subspace →
Not OK, errors will spread.

• Ancillary-qubit-assisted SWAP (ancillary qubit initial state is unimportant):

8.2 Universal logical computation with magic states

Magic state computation relies on two essential ingredients:

(1) Gate teleportation: Given access to some special state |magic⟩, we can apply a non-
Clifford gate onto some other unknown state |ψ⟩ using only Clifford operations (gates
and measurements).

(2) Magic state distillation: A scheme to prepare an encoded version of |magic⟩ to be
used with gate teleportation.
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Consider the following circuit:

Suppose |ψ⟩ = α|0⟩ + β|1⟩. After the CNOT gate, we find

(CNOT2,1)|ψ⟩1 ⊗ (Uϕ|ψ⟩2) = 1√
2
(
α|00⟩ + βeiϕ|01⟩ + β|10⟩ + αeiϕ|11⟩

)
. (8.11)

If the measurement of qubit #1 gives |0⟩, the second qubit collapses onto the state
|ψ′⟩ ∝ α|0⟩ + βeiϕ|1⟩ = Uϕ |ψ⟩. If the measurement gives |1⟩, then the state of the second
qubit after the correction becomes |ψ⟩′ ∝ (UXU †)(β|0⟩+αeiϕ|1⟩) = α|0⟩+βeiϕ|1⟩ = Uϕ |ψ⟩.
In all cases, the circuit prepares the state Uϕ|ψ⟩ without knowing |ψ⟩ a priori, but knowing
Uϕ, and given Uϕ|+⟩ as an input.

This circuit applies Uϕ onto the input state, without having to apply Uϕ directly if given
Uϕ|ψ⟩ as an input! We might still have to apply (UϕXU

†
ϕ), though.

There are gates Uϕ such that Uϕ is not a Clifford unitary, but UϕXU
†
ϕ is! E.g., the T gate

T =
(

1 0
0 eiπ/4

)
. The gate T is not a Clifford unitary, but TXT † =

(
0 eiπ/4

eiπ/4 0

)
= 1√

2(X+Y ),
which is a Clifford gate.

Exercise: Show that 1√
2(X + Y ) = HS†HSH, proving that the operator is a Clifford

unitary.

Provided access to a copy of T |+⟩, we can apply T on any unknown qubit using only
Clifford operations.

More generally, gate teleportation can be used to implement any gate of the k-th level of
the Clifford hierarchy Ck, while consuming a suitable input state and assuming we can
perform gates in Ck−1. The k-th level of the Clifford hierarchy is defined recursively
as

Ck =
{
U : UPU † ∈ Ck−1 ∀ P ∈ Pn

}
; C1 = Pn . (8.12)

For the T gate, another convenient gate teleportation circuit is the following:

This circuit is convenient because the correction operation is a simple phase gate.

Exercise: Check that this circuit always outputs T |ψ⟩, up to a global phase.

We can use other circuits to teleport gates that are not diagonal. E.g., if U is diagonal in
the X basis, [UX,ϕ, X] = 0, we can use an analogous circuit:
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For a general U that does not commute with either Z or X, we can always use the following
scheme, based on the protocol of quantum teleportation:

Involving a Bell state |Φ+⟩ = 1√
2
(
|00⟩ + |11⟩

)
and performing a Bell measurement on the

first two qubits.

The additional input state Uϕ|+⟩, UX,ϕ|0⟩, or (1 ⊗ U)|Φ+⟩ above have the “magical”
property of enabling the application of a gate with a gate set that is less powerful. Such
states are referred to as magic states.

To apply a T gate, the corresponding magic state is

|T ⟩ := T |+⟩ = 1√
2
(
|0⟩ + eiπ/4|1⟩

)
. (8.13)

Suppose we had a reliable way of preparing an encoded state |T ⟩ in a code that supports
transversal Clifford operations. We could do universal computation on the encoded states
using transversal gates for the Cliffords and producing a magic state whenever we need to
apply a T gate.

The general strategy to prepare magic states encoded in the desired code is to begin with
noisy magic states and run them though a process called distillation to obtain fewer but
more accurate magic states.

There are several magic state distillation protocols that are known. A general understanding
of what can be done in terms of magic state distillation is still lacking; the field is still
under active research.

Let’s now study a particular scheme for magic state distillation, based on codes that have a
transversal T gate. We’ve seen that some codes happen to have transversal implementations
of the logical T gate, such as the [[15, 1, 3]] quantum Reed-Muller code. Such codes can
be leveraged to distill magic states, even though the code in which we’re running our
computation might be completely unrelated to the code with the transversal T gate.

Suppose we have qubits encoded in a code with transversal Cliffords and let’s fix a
[[nT , 1, dT ]] code that has a transversal implementation of a logical T gate. The idea is to
use nT imperfect encoded magic states to distill a single, more accurate encoded magic
state. We proceed as follows:

1. (1) Prepare a logical |+⟩ state in the [[nT , 1, dT ]] code with each of the nT qubits
encoded in our base code;

2. (2) Use nT additional qubits encoded in our base code, initialized in some imperfect
magic states, to apply T⊗nT onto the nT qubits of the encoded |+⟩ state using gate
teleportation. If the magic states and Clifford gates where perfect, we would have a
state T |+⟩ encoded in the [[nT , 1, dT ]] code.
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At this point, there are likely errors in our state since the original nT magic states were
faulty.

We could error-correct the [[nT , 1, dT ]] code to recover a noiseless magic state, provided
there were ≤ (dT − 1)/2 faults in the original magic states.

Actually, it suffices to detect errors, which we can do up to weight ≤ dT − 1; if we detect
any error, we throw the state away and start again. We catch more errors in this fashion.
We then:

1. (3) Run error detection. If an error is detected, we start again.

Finally, we need to decode the [[nT , 1, dT ]] code to get a “raw” magic state encoded only
in our base code.

1. (4) Decode the [[nT , 1, dT ]] code.

If the original, noisy magic states have a noise rate p, then the new ones have noise O(pdT ).

In the case of the [[15, 1, 3]] quantum Reed-Muller code, applying T⊗15 implements, in fact,
a logical T †. Therefore, we need to include a logical S correction immediately after step
(2), recalling ST † = T . The application of the S gate is simple because it has a transversal,
Clifford implementation in the [[nT , 1, dT ]] code; indeed, applying ST on each qubit of the
[[nT , 1, dT ]] code is the same as directly applying T † on each of those qubits, which applies
the logical T as desired.

This protocol can still be heavily optimized. It can even be written as a protocol on five
qubits.

Other magic state distillation protocols offer different distillation factors. E.g. 15 → 1,
5 → 1, 116 → 12. We can also distill one type of magic state (e.g., for a T gate) to another
type of magic state (e.g., for a CCZ gate): 512 (|T ⟩) → 10 (|CCZ⟩), etc.

Magic state distillation is generally an expensive process. That’s one reason why we often
worry about the number of T gates that are present in a circuit we’d like to run.

8.3 Fault-tolerant quantum computation with the surface code

We can now begin assembling the elements required to construct a fault-tolerant scheme to
perform quantum computation with the surface code.

We suppose we have a large 2D array of qubits that are available. Qubits are encoded on
small surface code patches:

We’ve seen that, as long as our hardware qubits are below a relevant threshold, we can
engineer arbitrarily good logical qubits.

We can extend or deform individual patches as we like, by including more stabilizers in the
code:

125



8.3. FAULT-TOLERANT QUANTUM COMPUTATION WITH THE SURFACE CODE

Exercise: Convince yourself how one can extend, deform, or compress patches by including
additional stabilizers or removing stabilizers from consideration, following Refs. [37, 42].

A single qubit can be measured by measuring all its qubits in the computational basis,
since it is a CSS code.

The logical X and Z operators for each qubit can be applied with a transversal operation;
they are strings of operators across the patch. But instead of applying Pauli operations
directly on the hardware qubits, it is usually simpler to track an overall Clifford transfor-
mation in software; we talk about “updating the Pauli frame,” as if we changed the logical
“coordinate system” (choice of logical Pauli operators) in which we operate.

Implementing a logical Hadamard H is somewhat annoying, unless we can rotate all qubits
physically (which we usually cannot do):

But again, H is a Clifford operation, so we can also track its effect in software, as long as
we are able to update correspondingly all subsequent gates we’d like to apply to the qubits.

As a CSS code, the surface code has a transversal CNOT between two patches, implemented
by applying CNOTs on pairs of qubits, one from each patch:

But this implementation, even if it is transversal, is often impractical, as it requires
applying gates between distant qubits. Thankfully, there is another, more practical way of
implementing CNOT gates.

We introduce a new operation between patches: lattice merging. Let’s consider two
patches aligned over a pair of rough boundaries, and let’s suppose we have a fresh row of
qubits between these patches:

In a lattice merge procedure along the rough boundary (rough lattice merge), we perform
the following steps:

(1) We initialize the fresh qubits in |0⟩;
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(2) We measure new bulk surface code star stabilizers across the earlier boundaries,
involving the new fresh qubits;

(3) Perform error correction.

(As we perform error correction, we need to measure the stabilizers multiple times to
counter the effect of measurement errors.)

The product of all the new stabilizers we measured in this fashion is X1 ⊗X2! The lattice
merging operation performs a logical measurement of X1 ⊗X2 between the two patches.

The result is a new patch of a different width. If the initial states were |ψ⟩1 ⊗ |ϕ⟩2, with
|ψ⟩ = α|0⟩ + β|1⟩ and |ϕ⟩ = α′|0⟩ + β′|1⟩, then the new patch is left in the logical state

|ψ⟩1 ⊗ |ϕ⟩2
lattice merge−−−−−−−−→ α|ϕ⟩ + (−1)mβ(X|ϕ⟩) = α′|ψ⟩ + (−1)mβ′(X|ψ⟩) , (8.14)

where m is the outcome of the measurement of X1 ⊗X2, obtained as the product of all
the new stabilizer outcomes.

Observe that there is no risk of introducing a logical Z error because of the way we might
have messed up the X stabilizer outcomes along the vertical measurement path, because
logical Z operators run horizontally from rough boundary to rough boundary.

Similarly, we can perform a smooth lattice merge along a smooth boundary with an
additional row of qubits in the |+⟩ state, and where we measure the new plaquettes that
are formed by aligning the patches with the fresh row of qubits:

The operation performed after the smooth lattice merge (including any correc-
tions/redefinition of logical operators) is a logical Z1Z2 measurement.

We also introduce an operation called lattice splitting. This operation splits a large
surface code patch into two smaller patches.

The operation of smooth lattice splitting consists in measuring a row of qubits connecting
two rough boundaries in the X basis, creating two new smooth boundaries:

Error correction proceeds on the individual patches, but we update the expected value
of the new boundary stabilizers to (−1) whenever the random outcome of an X qubit
measurement was −1:
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(Remember, the original state is an eigenstate of all original star operators.)

Logical Z operators (horizontal Z strings) are not affected by these measurements, so they
still reveal the same value both above and below the lattice split. The original logical X
straddles the split, indicating that we’ve entangled the two new qubits. One can verify
that the operation performed by the smooth lattice splitting is:

α|0⟩ + β|1⟩ smooth split−−−−−−−→ α|00⟩ + β|11⟩ . (8.15)

Similarly, a rough lattice split performs the operation

α|+⟩ + β|−⟩ rough split−−−−−−→ α|++⟩ + β|−−⟩ . (8.16)

The lattice split and merge operations are collectively referred to as lattice surgery
operations.

Lattice surgery operations can be employed, for instance, to perform a CNOT gate between
two patches:

(1) Say we have two patches C and T encoding two qubits to act as the control and the
target qubits of a CNOT gate. We add an ancillary qubit, encoded in a patch A, and
prepared in the logical state |+⟩. We arrange the patches as follows:

Suppose the initial state of C is |ψ⟩C = α|0⟩ + β|1⟩, and let |ϕ⟩T be the initial state
of T .

(2) We perform a smooth lattice merge between C and A:

The new combined patch (CA) is left in the state

α|0⟩(CA) + β|1⟩(CA) (8.17)

(3) Perform a smooth lattice split of C and A:
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The state of C and A is now entangled:

α|00⟩CA + β|11⟩CA . (8.18)

(4) Perform a rough lattice merge between A and T :

The state of C and (AT ) is now(
α|00⟩CA + β|11⟩CA

)
⊗ |ϕ⟩T

[2ex] rough merge−−−−−−−→ α|0⟩C |ϕ⟩(AT ) + β|1⟩(X|ϕ⟩(AT )) = CNOT
(
|ψ⟩ ⊗ |ϕ⟩

)
. (8.19)

In the steps above, we’ve implicitly assumed all necessary correction operations and/or
redefinition of the logical operators have been applied.

The result produces the output of the CNOT onto C and a larger merged patch (AT ). We
can reduce the size of the latter patch if we need the result on the original patch location
T .

In summary, lattice operations (resizing, moving, etc.) along with lattice surgery operations
provide fault-tolerant implementations of all Clifford gates.

A provision of encode magic states, obtained via magic state distillation, enables universal
fault-tolerant quantum computation.

8.4 Further reading

We point in particular to Chapters 11 and 13 of Gottesman’s book [1].

The original Eastin-Knill paper is a great read [54]. Further restrictions on logical com-
putation include restrictions on logical gates that can be implemented with short-depth
circuits on topological codes (Bravyi-König) [55] and robust versions of the Eastin-Knill
theorem for approximate quantum error correction [56].

We point to Ref.[57] for deeper details on surface code lattice surgery operations. Proposals
for fault-tolerant computation with the surface code include Refs. [41, 42]. We point to
Ref. [48] for proposals for fault-tolerant quantum computation with the color code.

Magic state distillation is also a very active topic of research. See for instance Refs. [58,
59] that optimize magic state distillation protocols and identifies families of codes with
transversal T gates.

There are alternative methods of applying non-Clifford gates. These include a method
with subsystem codes based on a 3D color code (e.g. [45]), braiding anyons in a suitable
topological state of matter (cf. ), and concatenating codes with different types of
transversal gates [60].
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Chapter 9

Bosonic codes

This course has been mostly focused on qubit codes, given that a lot is known about them.
The surface code is a prominent example and has been really extensively studied!

Can we construct interesting codes using other quantum systems as elementary constituents?
Qudit codes, with a local dimension q ≥ 3, have a rich structure that we won’t have the time
to explore in this lecture. Instead, we’ll focus now on building codes with continuous-variable
systems we find commonly across quantum devices: quantum harmonic oscillators.

9.1 Quantum bosonic modes.

A bosonic mode corresponds to an infinite-dimensional Hilbert space. Some mathematical
subtleties related to this fact will be glossed over in favor of clarity and simplicity.

The Hilbert space is L2(R → C), i.e., the space of square-integrable, complex-valued
functions over the real line.

The position “basis” is formed of position “eigenstates” |x⟩, used to express a general state
|ψ⟩ as

|ψ⟩ =
∫
R
dx |x⟩⟨x |ψ⟩ =

∫
R
dxψ(x) |x⟩ , (9.1)

where ψ(x) = ⟨x |ψ⟩ is the position representation of |ψ⟩ (the wave function).

The position states obey, as a “basis,”

⟨x |y⟩ = δ(x− y) ;
∫
dx |x⟩⟨x| = 1 , (9.2)

where δ(·) is the Dirac delta “function.”

The position operator is

x̂ =
∫
R
dxx |x⟩⟨x| . (9.3)

The momentum “states” |p⟩ are related by a Fourier transform to the position “states”:

|p⟩ = 1√
2π

∫
dx eipx |x⟩ . (9.4)

130



9.1. QUANTUM BOSONIC MODES.

The momentum states also obey

⟨p|p′⟩ = δ(p− p′) ;
∫
dp |p⟩⟨p| = 1 . (9.5)

The position and momentum operators obey the fundamental commutation relation

[x̂, p̂] = i (≡ i1) . (9.6)

The harmonic oscillator is given by the Hamiltonian

Ĥ = ω

2
(
x̂2 + p̂2) . (9.7)

In your basic quantum mechanics course, you’ve seen that Ĥ is diagonal in the basis of Fock
states |n⟩, with n = 0, 1, . . ., which are eigenstates of the number operator n̂ = 1

2(p̂2 +x̂2 −1).
The number operator is more conveniently written as

n̂ = â†â ; â = 1√
2
(
x̂+ ip̂

)
. (9.8)

The â, â† are the bosonic mode operators, or annihilation and creation operators; they obey

â|n⟩ =
√
n |n− 1⟩ ; â†|n⟩ =

√
n+ 1 |n+ 1⟩ . (9.9)

In particular, â|0⟩ = 0, where |0⟩ is the vacuum state and the ground state of the quantum
harmonic oscillator Ĥ. We obtain all other Fock states starting from |0⟩ by acting iteratively
with â†.

The x̂ and p̂ operators generate shifts in momentum and position space:

e−iap̂ |x⟩ = |x+ a⟩ ; eibx̂ |x⟩ = eibx |x⟩ ;
eiap̂ |p⟩ = e−iap |p⟩ ; eibx̂ |p⟩ = |p+ b⟩ (a, b ∈ R) .

(9.10)

We can group both types of shifts together and define the displacement operator :

D̂(a, b) = e−iap̂+ibx̂ . (9.11)

(One often encounters the displacement operator in terms of a complex number α ∈ C,
encoding the a, b above by α = a

√
2 + ib

√
2 and yielding the alternative expression

D̂(α) = eαâ†−α∗â. We’ll come back to this form of the displacement operator later in this
chapter.)

To help us visualize bosonic states, we define the Wigner function of any given state ρ̂ as

Wρ̂ = 1
4π2

∫
dadb e−i(xb−pa) tr

{
ρ̂ D̂(a, b)

}
[1ex] = Fourier transform of tr

{
ρ̂D̂(a, b)

}
[1ex] = 1

2π

∫
dy eipy 〈x− y

2
∣∣ ρ̂∣∣x+ y

2
〉
. (9.12)

The Wigner function reveals the distributions of ρ in the x̂ as well as in the p̂ bases, by
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“tracing out” the other variable:

⟨x | ρ̂ |x⟩ =
∫
dpW (x, p) ; ⟨p | ρ̂|p⟩ =

∫
dxW (x, p) . (9.13)

The Wigner function is useful to visualize states. For example:

Bosonic modes commonly suffer one of the following errors. Error processes can be described
in terms of jump operators {K̂j} in a Lindbladian

L[ρ̂] = κ
∑

j

(
K̂j ρ̂K̂

†
j − 1

2
{
K̂†

j K̂j , ρ̂
})
, (9.14)

where κ is a fixed noise rate, or in terms of a quantum channel E with Kraus operators
which we think of as error operators that can be applied to the system.

• loss causes excited states to relax towards the ground state, losing photons. The
simple jump operator is the annihilation operator â, with Lindbladian L[ρ̂] = κ

(
âρ̂â†−

1
2{â†â, ρ̂}

)
.

• displacements are generated by x̂ and p̂ operators, or, more generally, are implemented
by D̂(a, b). If a, b are random and distributed according to a Gaussian distribution,
the noise corresponds to thermal noise.

• dephasing errors occur if H ∝ â†â is applied for some (typically small) random amount
of time, causing loss of coherence of the state in the Fock basis. Equivalently, the
environment proceeds in a weak measurement of the energy of the system, causing
loss in coherence.

• Some multimode codes inspired by qubit codes can correct a set of errors that affect
exclusively a small subset of the modes, similarly to common qubit error models. We
can think, for instance, about correcting the erasure of one of the modes.

9.2 Bosonic stabilizer codes

What is the bosonic equivalent of the Pauli X and Z operators, which we used to build
stabilizer groups? Good candidates are the bosonic position and momentum shift operators
defined in (9.10). To see why the bosonic shift operators are natural bosonic equivalents of
the Pauli X and Z operations, observe that they naturally generalize the following qubit
operations, where X shifts to the next computational basis state (modulo 2) and Z applies
a computational-basis-state-dependent phase:

X|c⟩ = |c⊕ 1⟩ ; Z|c⟩ = eiπ c |c⟩ ;
X|±j⟩ = eiπ j |±j⟩ ; Z|±j⟩ = |±j⊕1⟩ (c, j ∈ {0, 1}) ,

(9.15)
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employing the notation |±j⟩ = H|j⟩ =
{

|+⟩ (j=0)
|−⟩ (j=1)

}
for the Hadamard basis states.

The bosonic shift operators are unitaries that we’ll use to build stabilizer groups.

If the logical encoded quantum system is finite-dimensional, we’ll call the code a digital
stabilizer code. If we encode another mode (or collection of modes), it’s an analog stabilizer
code.

Several analog stabilizer codes are simple analogs of qubit codes. Say, the quantum
repetition code, in the position states, is:

|x⟩ → |x⟩ ⊗ |x⟩ ⊗ |x⟩ . (9.16)

Code states are +1 eigenstates of e−iθx̂1eiθx̂2 and of e−iθx̂2eiθx̂3 (for θ ∈ R), which generate
a stabilizer group.

The code can correct shifts in position of any of the individual modes and of arbitrary
magnitude:

1. Measure x̂1 − x̂2 and x̂2 − x̂3, which commute;

2. From the real-valued measurement outcomes, determine which mode was shifted and
the shift magnitude;

3. Apply a suitable shift to the affected mode to correct the error.

Let’s inspect the Knill-Laflamme conditions. If Ea,i ∝ e−iap̂i and Π =
∫
dx |x, x, x⟩⟨x, x, x|,

and fixing i = 1, i′ = 2 for convenience, we find:

ΠE†
a,iEa,iΠ ∝

∫
dxdy |x, x, x⟩⟨y, y, y| ⟨x, x, x |e−i(ap̂i−a′p̂i′ ) |y, y, y⟩

=
∫
dxdy |x, x, x⟩⟨y, y, y| ⟨x, x, x |y + a, y − a′, y⟩

=
∫
dxdy |x, x, x⟩⟨y, y, y| δ(y + a− x) δ(y − a′ − x) δ(x− y) .

= δ(a) δ(a′) Π ∝ Π . (9.17)

Here, we already hit upon difficulties dealing with infinite quantities. The argument above
is likely to have made a mathematically-minded reader uneasy, for multiple good reasons:

• How did we get “raw” Dirac deltas pop out, while we started with what looks like a
valid operator?

• Even Π is not well defined to start off with! For a project, we should have Π2 = Π,
but we find Π2 =

∫
dxdy |x, x, x⟩⟨y, y, y|⟨x, x, x |y, y, y⟩ =

∫
dxdy |x, x, x⟩⟨y, y, y| [δ(x−

y)]3 = [δ(0)]2Π! This is due to the fact that the states used to define these codes are
not normalizable.

We’re usually fine as long as we keep in mind the operational interpretation of the quantities
we write down, and remember that states like |x⟩ are ideal, infinite-energy, nonnormalizable
states that would have to be approximated physically with finite-energy valid quantum
states.
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By concatenating two copies of the 1 → 2 analog quantum repetition code, we find a
bosonic version of the [[4, 1, 2]] code, which we’ll call a [[4, 1, 2]]R bosonic analog code:

|x⟩ → |ψx⟩ =
[∫

dy eixy |y, y⟩
]⊗2

=
∫
dy

∫
dz eix(y+z) |y, y, z, z⟩ . (9.18)

This code can detect any error on a single mode. Equivalently, it can correct the erasure
of any single mode.

The stabilizer group of the [[4, 1, 2]]R analog code is generated by the displacements
eiθ(x̂1−x̂2), eiθ(x̂3−x̂4), and e−iθ(p̂1+p̂2−p̂3−p̂4):

S =
〈
eiθ(x̂1−x̂2) , eiθ(x̂3−x̂4) , e−iθ(p̂1+p̂2−p̂3−p̂4)

〉
(θ ∈ R) . (9.19)

Since the stabilizer group is continuous, it makes sense to study the infinitesimal generators
of the group, called nullifiers. They are mutually commuting. The codewords are +1
eigenstates of the stabilizers, so they must be 0-eigenstates of the nullifiers: nullifiers
annihilate codewords.

The nullifiers of the [[4, 1, 2]]R code are spanned by

{x̂1 − x̂2 , x̂3 − x̂4 , p̂1 + p̂2 − p̂3 − p̂4} . (9.20)

We can similarly construct analog versions of qubit codes:

• A [[9, 1, 3]]R version of the [[9, 1, 3]] Shor code;

• A [[5, 1, 3]]R version of the [[5, 1, 3]] perfect code;

• An analog surface code;

• etc.

The way analog stabilizer codes ensure the stabilizer elements commute is by ensuring the
nullifiers commute. Can we get stabilizer generators to commute without requiring the
commutation of corresponding nullifiers?

Displacements corresponding to noncommuting generators may may still commute for
particular shift values. Consider a single mode, on which x̂ and p̂ shifts obey the Weyl
group commutation relations:

e−iap̂eibx̂ = eiabeibx̂e−iap̂ . (9.21)

We find that [e−iap̂, eibx̂] = 0 if ab = 0 mod 2π, despite x̂ and p̂ not commuting.

For instance, we can choose S1 = ei
√

2πNx̂ and S2 = e−i
√

2πNp̂ to generate a stabilizer group

SGKP = ⟨S1, S2⟩ =
{
Sk

1S
ℓ
2 : k, ℓ ∈ Z

}
. (9.22)

This group is discrete, so it does not have nullifiers.

We see that SGKP stabilizes a logical N -dimensional qudit, defined by logical operators
Z = S

1/N
1 = ei

√
2π/Nx̂ and X = S

1/N
2 = e−i

√
2π/Np̂. We can verify that Z and X
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individually commute with all stabilizers and satisfy XZ = ei2π/NZX, as required by qudit
X and Z Weyl operators (also known as modular qudit operators). For a qubit (N = 2),
and we find as expected that X and Z anticommute, XZ = −ZX.

This code is known as the Gottesman-Kitaev-Preskill (GKP) code, in honor of its
discoverers. In one of its simplest forms (with N = 2), it encodes one qubit into a single
bosonic mode.

The code states of the GKP code must have both a position representation ψ(x) that is√
2πN -periodic as well as a momentum representation ψ̃(p), the Fourier transform of ψ(x),

that is also
√

2πN -periodic. (Indeed, this periodicity is enforced by the chosen stabilizers.)
We know that a Dirac delta comb has this property, and indeed it gives the position (and
momentum representation of the GKP code states. For N = 2, we find:

|0GKP⟩ =
∑
ℓ∈Z

|x=(2ℓ)
√
π⟩ ∝

∑
ℓ′∈Z

|p=ℓ′
√
π⟩ ;

|1GKP⟩ =
∑
ℓ∈Z

|x=(2ℓ+ 1)
√
π⟩ ∝

∑
ℓ′∈Z

(−1)ℓ′ |p=ℓ′
√
π⟩ ;

|+GKP⟩ ∝
∑
ℓ∈Z

|x=ℓ
√
π⟩ ∝

∑
ℓ′∈Z

|p=(2ℓ′)
√
π⟩ ;

|−GKP⟩ ∝
∑
ℓ∈Z

(−1)ℓ|x=ℓ
√
π⟩ ∝

∑
ℓ′∈Z

|p=(2ℓ′ + 1)
√
π⟩ .

(9.23)

The Wigner function of GKP states has a distinctive grid structure. For |0⟩GKP and |1⟩GKP
with N = 2, we find:

W|jGKP⟩(x, p) ∝
∑

k,ℓ∈Z
(−1)k·ℓ δ

(
p−

√
π

2 k
)
δ
(
x−

√
π(ℓ+ j)

)
. (9.24)

The Wigner functions of the GKP-encoded qubit Pauli eigenstates are depicted in Fig. 9.1.

The action of logical operators on the Wigner function can be visualized as:

GKP codes can protect against small displacements. The smallest displacements that act
nontrivially on the code space are shifts by

√
π in either quadrature. GKP codes can thus

correct shifts up to
√

π
2 .

The ideal GKP code words have infinite energy and are not normalizable. To realize them
physically, we replace the position “eigenstates” |x⟩ by thin Gaussians ∼ e−x2/(2∆2), and
we apply a global Gaussian envelope ∼ e−κ2x2/2 to damp off peaks at positions far away
from the origin:
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Figure 9.1: Wigner function representation of the GKP encoded states associated with the
logical qubit states |0⟩, |1⟩ (Z eigenstates), |±⟩ (X eigenstates), and |±i⟩ (Y eigenstates).
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Part of the difficulty of engineering GKP code states is the need to measure not x̂ and
p̂, but rather the values of x̂ and p̂ modulo 2

√
π. Techniques to do so include using an

ancillary qubit/qudit/mode to perform controlled-displacements.

More generally, GKP codes have a beautiful description in terms of lattices in R2n,
representing the phase space of n bosonic modes, with a symplectic structure.

GKP states can also be used to construct an encoding that protects a logical bosonic mode.
Consider the 2-mode CSUM gate defined through the following action by conjugation on
the position and momentum operators of each mode:

x̂1 → x̂1 ; (= CSUM x̂1 CSUM†)
p̂1 → p̂1 − p̂2 ;
x̂2 → x̂1 + x̂2 ;
p̂2 → p̂2 .

(9.25)

We define an encoding of a logical mode |ψ⟩ as:

where |GKP0⟩ =
∑

ℓ∈Z|ℓ
√

2π⟩ is the canonical GKP state/grid state.

This code is called a GKP-stabilizer code, whose stabilizer group is

S = CSUM SGKP CSUM†

=
〈
CSUM e−ip̂2

√
2π CSUM† , CSUM eix̂2

√
2π CSUM†

〉
. (9.26)

Suppose the noise effects small displacements δx1, δp1, δx2, and δp2 in the quadratures,
distributed as Gaussians Pr[δxi] ∼ e−(δxi)2/(2σ2), Pr[δpi] ∼ e−(δpi)2/(2σ2). After the encod-
ing, noise, and after we apply an additional CSUM† to decode the logical mode, the four
quadratures transform as

x̂1 → x̂1 + δx1 ; x̂2 → x̂2 + δx2 − δx1 ;
p̂1 → p̂1 + δp1 + δp2 ; p̂2 → p̂2 + δp2 .

(9.27)

We measure the stabilizers by measuring x̂2, p̂2 modulo
√

2π after applying CSUM†. We
measure, assuming that δxi, δpi are small,

xobs = δx2 − δx1 ; pobs = δp2 . (9.28)
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We can remove the effect of δp2 on the logical mode by applying a shift −δp2 on the first
mode, such that

p̂1
enc, noise, CSUM†
−−−−−−−−−−−→ p̂1 + δp1 + δp2

correct −δp2−−−−−−−−→ p̂1 + δp1 . (9.29)

The effect of δp1 remains; we don’t achieve any noise reduction in the momentum shift on
the logical mode, but the noise is also not amplified.

We can apply a shift x → x− xobs/2 on the first mode, such that the logical x̂ transforms
overall as

x̂1
enc, noise, CSUM†
−−−−−−−−−−−→ x̂1 + δx1

correct −xobs/2−−−−−−−−−−→ x̂1 + δx1 + δx2
2 . (9.30)

We’re left with the position displacement error (δx1 + δx2)/2. But if we assume that δx1,
δx2 are independent random variables, then (δx1 + δx2)/2 has half the variance of the
individual variables x1 and x2. I.e., the noise magnitude decreased from σ to σ/2.

With a smarter choice of encoding gates and modes, we can achieve noise reduction in
both quadratures.

9.3 Bosonic Fock-state codes

While GKP codes are naturally described with position or momentum states, certain
bosonic codes have some rotational symmetry in phase space and are more conveniently
described in terms of Fock states.

A useful set of states that transforms naturally under phase space rotations are the phase
“states:”

|ϕ⟩ = 1√
2π

∑
n≥0

eiϕn |n⟩ . (9.31)

Similarly to position “states,” phase “states” cannot be normalized. Furthermore, phase
“states” are not quite orthogonal. Phase “states” occupy a ray in phase space:

A number-phase code encodes a qubit (or qudit) into evenly-spaced sequences of phase
states. For instance, for a qubit and N = 3 phase states per code word, we can set

|0num−ph⟩ = 1√
3

(
|ϕ=0⟩ + |ϕ= 2π

3 ⟩ + |ϕ= 4π
3 ⟩
)

;

|1num−ph⟩ = 1√
3

(
|ϕ= π

3 ⟩ + |ϕ=π⟩ + |ϕ= 5π
3 ⟩
)
.

(9.32)

The number-phase code has a useful representation of its |±⟩ code words in terms of Fock
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states:

|+num−ph⟩ = 1√
2

(
|0num−ph⟩ + |1num−ph⟩

)
∝

∑
n≥0

|6n⟩ ;

|−num−ph⟩ = 1√
2

(
|0num−ph⟩ − |1num−ph⟩

)
∝

∑
n≥0

|6n+ 3⟩ ;
(9.33)

Intuitively, number-phase codes can correct small shifts in phase (but careful! |ϕ⟩’s are not
orthogonal) and a small number of jumps in excitation levels (|n⟩ → |n± 1⟩).

Recall that a coherent state |α⟩ is defined as an eigenstate of the mode annihilation operator
with complex eigenvalue α ∈ C:

â|α⟩ = α|α⟩ . (9.34)

Recall some properties of coherent states:

• Fock basis representation:

|α⟩ = e− |α|2
2
∑
n≥0

αn

√
n!

|n⟩ ; (9.35)

• As displaced vacuum:

|α⟩ = D̂(α) |0⟩ ; D̂(α) = eαâ†−α∗â = D̂
(Re(α)√

2
,
Im(α)√

2

)
; (9.36)

• Time evolution with the Hamiltonian H = ωn̂ = ωâ†â:

e−iHt|α⟩ = |α e−iωt⟩ ; (9.37)

• The Wigner function of |α⟩ is a Gaussian centered at
(
x= Re(α)

√
2, p= Im(α)

√
2
)
.

• Overlap between two coherent states:

|⟨α |β⟩| = e− 1
2 |α−β|2 . (9.38)

If we use coherent states instead of the phase states in the number-phase code, we obtain
a cat code. Given α, n, a qubit is encoded as

|jcat,≈⟩ = 1√
N

N−1∑
k=0

∣∣α ei π
N

(2k+j)〉 . (9.39)

These code words are not exactly orthogonal, since coherent states are not
orthogonal! It can be more convenient to define the cat code states in the Hadamard
basis as

|±cat⟩ = 1
2
(
|0cat,≈⟩ ± |1cat,≈⟩

)
, (9.40)

now yielding truly orthogonal states.

In phase space (N = 2), cat states look as follows:
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Cat codes can protect against dephasing errors, which we can check by expanding the
dephasing error eiθn̂ ≈ 1+ iθn̂ and inspecting the Knill-Laflamme conditions:

Πn̂Π = |α|2Π +O(|α|2e−|α|2)Zcat , (9.41)

where Zcat = |+cat⟩⟨+cat| − |−cat⟩⟨−cat| is the logical Z operator of the cat-code-encoded
qubit.

Because the coherent states are not perfectly orthogonal, there is still an exponentially
suppressed (in |α|2) term effecting a logical Z. But dephasing cannot produce a logical X
error.

Cat code words can be engineered by dissipative systems with a Lindbladian of the form

L[ρ] = JρJ† − 1
2
{
J†J, ρ

}
, J = â2N − α2N . (9.42)

Steady states are then precisely those |ψ⟩ for which J |ψ⟩ = 0, i.e.,
(
â2N − α2N

)
|ψ⟩ = 0,

which single out the cat code words.

Another way of constructing a normalized (or physical) version of number-phase codes is
to introduce nonuniform coefficients in the Fock state representation, and to make sure the
coefficients vanish past some cut-off maximal excitation number.

A binomial code is defined by the following code words, for fixed N,D:

|0bin⟩ = 1
2D/2

∑
m even

√√√√(D + 1
m

)
|Nm⟩ ;

|1bin⟩ = 1
2D/2

∑
m odd

√√√√(D + 1
m

)
|Nm⟩ .

(9.43)

A simple example is with N = 2 and D = 1:

|0bin⟩ = 1√
2
(
|0⟩ + |4⟩

)
; |1bin⟩ = |2⟩ . (9.44)

This code detects a Fock state shift (an excitation up or down, although not both), and a
dephasing error n̂. The code can thus correct one loss â.
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9.4 Further reading

- Victor’s review paper [61]

- GKP original paper [62]

- Girvin lecture notes [12]

- General Gaussian quantum information [63]

- Noise in bosonic modes, channel capacities [64]

- other types of bosonic codes - e.g. spherical codes [65]

- Physical realization in cavity QED [66]

- GKP and symplectic lattices. [67] - Fault tolerance in GKP and GKP geometry [68]
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